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Abstract--- This study makes an attempt of classifying 

different fault conditions which occurs on wind turbine blade due 

to environmental stress and high wind speed. “Here three bladed 

horizontal axis variable wind turbine was used for experimental 

study and different faults like blade crack, hub-blade loose 

connection, erosion, pitch angle twist and blade bend was 

considered. This study had been carried out in three phases 

namely feature extraction, feature selection and feature 

classification. Initially vibration signals are noted for different 

blade conditions and required features are obtained using 

histogram features. Secondly, from the extracted feature, most 

dominating feature need to be chosen using J48 decision tree 

classifier. Later, the selected feature is fed into the classifiers like 

Nested Dichotomy (ND), Class-Balanced Nested Dichotomies 

(CBND) and Data near Balanced Nested Dichotomy (DNBND) 

for classification of the faults. These classifiers are compared 

with respect to their accuracy to suggest a better model for fault 

diagnosis on blade. The suggested model can be incorporated in 

real-time system to monitor the condition of wind turbine blade.” 

Keywords--- Fault Diagnosis, Wind Turbine Blade, Condition 

Monitoring, Histogram Features, Vibration Signals, Nested 

Dichotomy Classifiers. 

I. INTRODUCTION 

Renewable energy sources have drawn in much 

consideration because of their positive influence on society 

and environment. “Wind energy is a rapid growing clean 

renewable energy source [1]. 

Wind turbines are actuality produced to upgrade 

operational implementation and yield through expanding 

blade size and enhancing physical framework. It has been 

confirmed that blade damage may bring about lack in 

productivity, and its repair is expensive and requires 

considerable repair time. 

To avoid extreme blade damage and minor failures, it is 

important to identify the early failures by routine 

monitoring, and proceeding with evaluation of the structural 

health of wind turbine blades [2]. The objective of this study 

is to build up a model for the condition monitoring of wind 

turbine blade using machine learning approach.” 
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There are two types of approaches which are carried out 

on condition monitoring assessment they are traditional 

approach and machine learning approach. “The traditional 

approach is mainly used for the stationary signals where 

frequency of the signals component does not change with 

respect to time but rotating machines produce non-stationary 

signals [3]. 

Since the frequency components change due to wear and 

tear, fault discrimination is very difficult in traditional 

approach. Hence, not preferred. In machine learning 

approach, algorithms have capability to learn continuously 

and adapt themselves to the varying situations. Researches 

often resort to machine learning approach for fault diagnosis 

of mechanical systems [4].” 

Many studies were carried out using machine learning 

studies and simulation studies to name a few, Andrew 

Kusiak and Anoop Verma [5] built a data-driven model for 

monitoring blade pitch faults in wind turbines. “They 

considered two blade pitch faults namely, blade angle 

asymmetry and blade angle implausibility and determine the 

associations between them. 

They conducted the study using bagging (72.5%), 

artificial neural network (76.2%), pruning rule-based 

classification tree (75.5%), K-nearest neighbour (73.5%) 

and genetic programming (74.7%) algorithms. They 

considered only pitch fault and other faults were not 

considered in their study.” 

Abouhnik and Albarbar [6] simulated crack in wind 

turbine blades and carried out crack location prediction 

study using vibration measurements and the level of an 

empirically decomposed feature intensity level (EDFIL). 

“The main drawback in this study is they do not consider 

other fault parameters in their study expect crack. A 

classification and detection of wind turbine pitch faults were 

done by Godwin and Matthews [7]. They used RIPPER 

algorithm in their study. They diagnosed the electrical 

control system faults, in particular, wind turbine pitch faults 

which yielded them 87.05% classification accuracy. They 

considered pitch faults alone in this study. 

A study on integrating structural health management with 

contingency control for wind turbines using nonlinear high 

fidelity simulation was carried out by Frost et al., [8]. They 

studied about the structural health of the blade, the speed of 

the turbine and decision making using prognostic 

information and achieved 90% accuracy in their work. They 

have done the study for blade bend fault; and not considered 

other faults.  
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Chen et al., [9] conducted an experiment on wind turbine 

pitch faults prognosis using apriori knowledge based 

adaptive neuro-fuzzy inference system (ANFIS) and 

SCADA data. They obtained 88.30% classification accuracy 

for the blade pitch fault. In this study also they considered 

pitch fault alone.”  

A work on structural health monitoring of wind turbine 

blades with acoustic source localization using wireless 

sensor networks was done by Bouzid et al., [10]. “They 

done the online monitoring of the blade for the fault 

identification of erosion and crack which affects the blade 

using acoustic emission NDT. They predicted the error rate 

of 7.98%. Lee et al., [11] done a work on wind turbine blade 

moment signals to blade condition monitoring using a 

transformation algorithm. They presented a novel method of 

transforming blade moment signals on a horizontal axis 3-

blade wind turbine. 

Herath et al., [12] conducted a study on the design of 

shape adaptive wind turbine blades using differential 

stiffness bend twist (DSBT) coupling using FEA analysis. 

They proposed this concept to control the deformation 

behaviour in the blades. Liu et al., [13] carried out a study 

on the influence of alternating loads on nonlinear vibration 

characteristics of cracked blade in a rotor system using FEM 

analysis. They did the experiment for different alternating 

loads for the identification of the crack fault and other faults 

not taken into consideration.” 

Numerous works were carried out using simulation 

studies however, only a very few of the experimental studies 

for condition monitoring on wind turbine blade was carried 

out. Some researchers carried out fault diagnosis system 

using machine learning approach and they considered very 

few faults in their study. “Only selected algorithms were 

used to perform the fault prediction on wind turbine blade 

and many algorithms are yet to be studied [14]. Figure 1 

shows the methodology of the work done. The contribution 

of the present study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wind Turbine with 

Accelerometer 

 

Data Acquisition (Vibration signal) 

Test Data Set 

Feature Extraction (Histogram) 

Feature Selection using J48 Algorithm 

Training Data Set 

Training model 

Trained Model 

Output 

Fault Detection in Blade 

 
Figure 1: Methodology 

1. This study considers more than two faults for fault 

diagnosis of wind turbine (blade crack, erosion, 

hub-blade loose connection, pitch angle twist and 

blade bend). 

2. This problem is modelled as a multiclass 

classification problem and attempts to classify 

using classifiers such as Nested Dichotomy (ND), 

Class-Balanced Nested Dichotomies (CBND) and 

Data near Balanced Nested Dichotomy 

(DNBND).” 

II. EXPERIMENTAL STUDIES 

The main aim of this study is to classify whether the 

blades are in good condition or in a defective state. “If it is 

defective, then the objective is to identify the type of fault. 

The experimental setup and experimental procedure are 

described in the following subsections. 

Experimental Setup 

The experiment was carried out on a 50W, 12V variable 

speed wind turbine (MX-POWER, model: FP-50W-12V). 

The technical parameters of a wind turbine are given in 

Table 1. The wind turbine was mounted on a fixed steel 

stand in front of the open circuit wind tunnel outlet. 

The wind tunnel speed ranges from 5m/s to 15 m/s and 

acts as a wind source to start the wind turbine. The wind 

speed was varied continuously in order to simulate the 

environmental wind condition. The experimental setup is 

shown in Figure 2. 

Piezoelectric type accelerometer was used as a transducer 

for acquiring vibration signals. It has high sensitivity for 

detecting faults. 

Hence, accelerometers are widely used in condition 

monitoring. In this case, an uniaxial accelerometer of 500g 

range, 100 mV/g sensitivity, and resonant frequency around 

40 Hz was used.  

Table 1: Technical Parameters of Wind Turbine 

Model FP-50W-12V 

Rated Power 50 W 

Rated Voltage 12 V 

Maximum Current 4 A 

Rated Rotating Rate 850 rpm 

Start-up Wind Speed 2.5 m/s 

Cut-in Wind Speed 3.5 m/s 

Cut-out Wind Speed 15 m/s 

Security Wind Speed 40 m/s 

Rated Wind Speed 12.5 m/s 

Engine 
Three-

phase permanent magnet generator 

Rotor Diameter 1050 mm 

Blade Material Carbon fiber reinforced plastics 

The piezoelectric accelerometer (DYTRAN 3055B1) was 

mounted on the nacelle near to the wind turbine hub to 

record the vibration signals using an adhesive mounting 

technique. 

It was connected to the DAQ system through a cable. The 

data acquisition system (DAQ) used was NI USB 4432 

model. The DAQ card has five analogue input channels with  
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a sampling rate of 102.4-kilo samples per second with 24-

bit resolution. The accelerometer is coupled to a signal 

conditioning unit which consists of an inbuilt charge 

amplifier and an analogue-to-digital converter (ADC). 

From the ADC, the vibration signal was taken. These 

vibration signals were used to extract features through 

feature extraction technique. 

One end of the cable is plugged to the accelerometer and 

the other end to the AIO port of DAQ system. NI – 

LabVIEW was used to interface the transducer signal and 

the system (PC). 

Experimental Procedure 

In the present study, three-blade variable horizontal axis 

wind turbine (HAWT) was used. 

Initially, the wind turbine was considered to be in good 

condition (free from defects, new setup) and the signals 

were recorded using an accelerometer. 

These signals were recorded with the following 

specifications. 

1. Sample length: The sample length was chosen 

long enough to ensure data consistency; and also 

the following points were considered. ARMA 

measures are more meaningful when the number of 

samples is sufficiently large. On the other hand, as 

the number of samples increases the computation 

time increases. To strike a balance, a sample length 

of 10000 was chosen. 

2. Sampling Frequency: The sampling frequency 

should be at least twice the highest frequency 

contained in the signal as per Nyquist sampling 

theorem. By using this theorem sampling 

frequency was calculated as 12 kHz (12000Hz). 

3. Number of samples: Minimum of 100 (hundred) 

samples were taken for each condition of the wind 

turbine blade and the vibration signals were stored 

in data files. 

 

Figure 2: Wind Turbine Setup 

The following faults were simulated one at a time while 

all other components remain in good condition and the 

corresponding vibration signals were acquired. Figure 3 

shows the different blade fault conditions which are 

simulated on the blade. 

a) Blade bend (BB): This fault occurs due to the 

high-speed wind and complex forces caused by the 

wind. The blade was made to flap wise bend with 

10
 º 

angle. 

b) Blade crack (BC-2): This occurs due to foreign 

object damage on the blade while it is in operating 

condition. On the blade, 15mm crack was made. 

c) Blade erosion (BE): This fault is due to the 

erosion of the top layer of the blade by the high-

speed wind. The smooth surface of the blade was 

eroded using emery sheet (320Cw) to provide an 

erosion effect on the blade. 

d) Hub-blade loose contact: This fault generally 

occurs on a wind turbine blade due to an excessive 

runtime or usage time. The bolt connecting the hub 

and blade was made loose to obtain this fault.  

e) Blade pitch angle twist (PAT): This fault occurs 

due to the stress on the blade caused by high-speed 

wind. This makes the pitch get twisted, creating a 

heavy vibration to the framework.  To attain this 

fault, blade pitch was twisted about 12
º 
angle with 

respect to the normal blade condition. 

 

 

Good condition blade Blade with crack 

  

Blade with pitch angle twist Blade with erosion 

  

Hub-blade loose connection  Blade with bend (Top View) 

Figure 3: Various Blade Fault Conditions 
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Figure 4: Vibration Signal Plot 

In Figure 4, the vibration signals (sample number vs. 

amplitude) are shown which were taken for different 

conditions of the wind turbine blade (good condition blade, 

blade bend, blade erosion, hub-blade loose connection, 

blade crack and pitch angle twist). 

III. FEATURE EXTRACTION 

The vibration signals were obtained for good and other 

faulty conditions of the blades. If the time domain sampled 

signals are given directly as inputs to a classifier, then the 

number of samples should be constant. The number of 

samples obtained are the function of rotation of the blade 

speed. “Hence, it cannot be used directly as the input to the 

classifier. However, a few features must be extracted before 

the classification process. The histogram was used as a 

feature extracting tool in this study. From the noted 

vibration signals, the needed feature is taken and that 

features are denoted as histogram features. There are two 

main factors to be considered in selection of bins they are, 

bin range and bin width [15]. 

The bin range must be from lowest of minimum 

amplitude (-0.017988) to extreme of maximum amplitude 

(0.024833) of all the six classes (good, bend, crack, erosion, 

loose and PAT). The number of bins for the fault diagnosis 

of wind turbine blade has been attained by carrying out a 

sequence of trials using J48 algorithm with different number 

of bins. Initially, the range of bin is separated into two 

equivalent portions. That is to say, the number of bins 

utilized is two. The two histogram features, to be specific,  
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X1 and X2 are extracted and the relating classification 

accuracy is additionally acquired by using J48 algorithm.  

The approach and methodology of performing the same 

using J48 algorithm are clarified in Section 4. A set of 

related trails is done with various numbers of bins from 2, 3, 

4,5,…, 100 and the corresponding results are shown in 

figure 5. 

 
Figure 5: Bin Range vs. Classification Accuracy 

From figure 5, bin size 77 has been chosen since the 

classification accuracy of bin 77 was found to be 92%. A set 

of 77 starting from X1, X2… X77 were extracted from the 

vibration signals and these are denoted as histogram 

features. 

The amplitude ranges from -0.017988 to 0.024833. For 

further study, rather than utilizing vibration signals directly, 

the histogram features extracted from vibration signals are 

utilized. 

The procedure of calculating applicable parameters of the 

signals that represent the data contained in the signal is 

called feature extraction. Histogram analysis of vibration 

signals yields distinctive parameters.” 

All the extracted histogram features, X1 to X77 extracted 

from the vibration signals may not contain the needed 

information for classification. The applicable ones are 

selected using J48 algorithm. 

IV. FEATURE SELECTION 

Once the bin size 77 is chosen, the applicable features are 

to be selected from the bin since some features will be less 

predicting the faults. “For feature extraction, J48 algorithm 

is used where they predict the classes in a tree structure [16].  

A typical tree comprises of a number of branches, one 

root, a number of nodes and a number of leaves. One branch 

is a chain of nodes from the root to a leaf; and each node 

involves one feature. The occurrence of a feature in a tree 

delivers the data about the significance of the accompanying 

feature. 

J48 algorithm provides the information of most 

contributing features in the bin via top-down tree structure. 

Features that have less discriminating capability can be 

deliberately rejected by fitting the threshold. 

This conception makes use of in choosing good features 

by the algorithm by inbuilt nature. Features which have 

good discriminating ability alone will appear in the tree. The 

features which dominate usually represent the condition of 

wind turbine blade. 

From figure 6, X33 is the most dominating feature 

followed by X34, X35, X36 and X32. 

 
Figure 6: J48 Tree Classification for Feature Selection 

V. FEATURE CLASSIFICATION 

Next step after feature selection is feature classification. 

The chosen elements are to be classified utilizing the Nested 

Dichotomy classifier. 

Nested Dichotomy (ND) 

A basic approach to enhance the classification accuracy 

for problems with a little number of classes is to store two-

class models and re-use them in distinctive individuals of an 

ensemble of nested dichotomies. “An arrangement of nested 

dichotomies is a statistical model that is utilized to break 

down a multi-class issue into numerous two-class issues. 

The breakdown can be characterized by as a binary tree. 

Every hub of the tree stores an arrangement of class names, 

the equivalent preparing training data and a binary classifier. 

At the absolute starting point, the root hub contains the 

entire collections of the original class labels relating to the 

multi-class characterization issue. This set is then divided 

into two subsets. These two subsets of class names are 

treated as two „meta‟ classes and a binary classifier is 

learned for predicting them. The training dataset is divided 

into two subsets relating to the two metaclasses and one 

subset of training data is viewed as the positive illustrations 

while the other subset of testing data is viewed as the 

negative cases. The two successor hubs of the root acquire 

the two subsets of the first class names with their 

corresponding training datasets and a tree is built by 

applying this process recursively. The procedure, at last, 

achieves a leaf hub if the hub contains one and only class 

name. It is clear that for any given c-class issue, the tree 

contains c leaf hubs (one for every class) and (c−1) interior 

hubs. Each interior hub contains a binary classifier. A good 

feature of utilizing a system of nested dichotomies for multi-

class issues is that it yields class probability estimates in a 

direct manner. Frank and Kramer [17] inspected arbitrary 

from the space of every single conceivable tree by 

considering every tree with equivalent probability. 
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The determination of the tree structure will impact the 

characterization results. It signifies well to utilize all 

conceivable nested dichotomies for a given issue and mean 

their probability assessments to yield exact forecasts. For a 

c-class issue, the quantity of conceivable frameworks of 

nested dichotomies is (2c − 3)!!. Subsequently, utilizing all 

conceivable nested dichotomies is not possible. Without 

former learning, any sampling plan that does not give 

special treatment to a specific class can be considered as a 

suitable competitor. The issue with arbitrary sampling based 

on uniform appropriation over trees is that the tree depth is 

just constrained by the number of classes, and deep trees can 

take quite a while to build. 

Class-Balanced Nested Dichotomies (CBND) 

The class-balanced nested dichotomy (CBND) technique 

depends on adjusting the number of classes at every hub. 

“Rather than testing from the space of every single 

conceivable tree (as in nested dichotomy), it is sampled 

from the space of every balanced tree. The benefit of this 

strategy is that the depth of the tree is ensured to be 

logarithmic in the number of classes. 

The number of conceivable class- balanced nested 

dichotomies is clearly smaller than the aggregate number of 

nested dichotomies [18]. The relation characterizes the 

number of conceivable class-balanced trees. 

(1) 

At every hub, the arrangement of classes is divided into 

equivalent size subsets (obviously, if the number of classes 

is odd, the size won't be precisely equivalent), and the base 

learning algorithm is used to the data comparing to these 

two subsets. The algorithm then recuses until one and only 

class is left out. 

It is applied over and over with distinctive random 

number seeds to produce a committee of trees. It 

demonstrates that a non-paltry number of class-balanced 

nested dichotomy can be produced for classification issues 

with five or more classes. There is a further chance to 

enhance the training time for gatherings of nested 

dichotomies. 

This is an added advantage of the class based nested 

dichotomy. There is a disadvantage with the class balanced 

methodology. Some multi-class issues are extremely 

unequal and a few classes are considerably more crowded 

than others. 

In that case, a class-balanced tree does not imply that it is 

also data balanced. This can contrarily influence runtime if 

the base learning algorithm has time unpredictability more 

regrettable than linear in the number of instances. 

Data near Balanced Nested Dichotomy (DNBND) 

An easy algorithm called data near balanced nested 

dichotomy (DNBND) can be utilized as a substitute for the 

class balanced nested dichotomy. “Since this system violets 

the condition that the sampling plan should not be one-sided 

towards a specific class. 

It arbitrary appoints classes to two subsets until the size 

of the training data in one of the subsets surpasses a large 

portion of the aggregate sum of training data at the hub. It is 

exceptionally fundamental to keep up a level of arbitrariness 

in the task of classes to subsets with a specific end goal to 

protect differing qualities in the committee of randomly 

generated systems of nested dichotomies [19]. 

On account of a skewed class appropriation, the base 

nested dichotomy algorithms‟ runtime is more poor than 

linear. 

In that case, the number of instances is separated as 

uniformly as could be expected under the circumstances at 

every hub, in order to diminish the greatest measure of data 

considered at a hub as fast as would be prudent.”  

VI. RESULTS AND DISCUSSION 

The vibration signals were noted for good condition and 

faulty blade conditions using DAQ. “Totally 600 samples 

were collected; out of which 100 samples were from good 

condition blade. For different faults such as like blade bend, 

erosion, blade crack, hub-blade loose connection, pitch 

angle twist, 100 samples from every condition were noted.  

J48 decision tree algorithm was used to select the best 

contributing histogram features from bin size 77. From 

Figure 5 and 6, the selected features are given as the input to 

the classifier to determine the classification accuracy with 

respect to faults created on the wind turbine blade. 

From Figure 7, the class-balanced nested dichotomy 

(CBND) classifier gives the maximum classification 

accuracy of 93.17% when compared to other classifiers. In 

Nested Dichotomy, the default classifier is fixed to be 

rotation forest algorithm. 

The confusion matrix of class-balanced nested dichotomy 

(CBND) is shown in Table 2. In confusion matrix, the 

diagonal element represents the correctly classified instance 

and the others are misclassified. From class-balanced nested 

dichotomy (CBND) classifier, the kappa statistics were 

found to be 0.918. It is used to measure the arrangement of 

likelihood with the true class.   

The mean absolute error was found to be 0.0438. It is a 

measure used to measure how close forecasts or prediction 

are with the ultimate result. The root mean square error was 

found to be 0.1321. It is a quadratic scoring rule which 

processes the average size of the error. The detailed class 

wise accuracy is shown in Table 3. 

Out of 600 samples, 559 samples are correctly classified 

(93.17%) and remaining 41 are misclassified (6.83%). The 

time taken to build the model is about 0.29 seconds; hence, 

this can use in real time for the fault detection on the wind 

turbine blade. 

Table 2: Confusion Matrix for Class-Balanced Nested 

Dichotomy (CBND) 

Blade 

condition

s 

Goo

d 

Ben

d 

Crac

k 

Erosio

n 

Loos

e 

PA

T 

Good 96 0 1 0 3 0 

Bend 0 100 0 0 0 0 

Crack 0 0 86 3 5 6 

Erosion 0 1 3 95 0 1 

Loose 5 1 3 0 91 0 

PAT 0 0 7 2 0 91 
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Table 3: Classwise Accuracy of Class-Balanced Nested 

Dichotomy (CBND) 

Clas

s 

TP 

Ra

te 

FP 

Rat

e 

Precis

ion 

Rec

all 

F-

Meas

ure 

M

CC 

RO

C 

Ar

ea 

PR

C 

Ar

ea 

Goo

d 

0.

96 

0.0

14 
0.931 

0.9

6 
0.941 

0.9

29 

0.9

99 

0.9

94 

Ben

d 
1 0 1 1 0.990 

0.9

88 
1 1 

Crac

k 

0.

86 

0.0

30 
0.851 

0.8

6 
0.856 

0.8

27 

0.9

86 

0.9

31 

Eros

ion 

0.

95 

0.0

10 
0.950 

0.9

50 
0.950 

0.9

40 

0.9

96 

0.9

85 

Loos

e 

0.

91 

0.0

18 
0.909 

0.9

1 
0.905 

0.8

86 

0.9

95 

0.9

77 

PAT 
0.

91 

0.0

12 
0.938 

0.9

1 
0.918 

0.9

03 

0.9

91 

0.9

72 

From class wise accuracy of class-balanced nested 

dichotomy (CBND)  (Table 3), the properties like  true 

positive rate (TP), false positive rate (FP), precision, recall, 

F-Measure, Matthews correlation coefficient (MCC), 

precision-recall curve (PRC) area, receiver operating 

characteristics (ROC) area are determined. TP is also called 

as sensitivity which used to predict the ratio of positives 

which are correctly classified as faults. FP is commonly 

described as false alarm in which the result that shows a 

given fault condition has been achieved, when it really has 

not been achieved [20-23]. The true positive (TP) rate 

should be close to 1 and the false positive (FP) rate should 

be close to 0 to propose the classifier is a better classifier for 

the problem classification [24-27]. In the class-balanced 

nested dichotomy (CBND), it shows that the TP near to 1 

and FP close to 0, then one can predict that the classifier we 

build for the particular problem is very much effective for 

the fault diagnosis problem.”  

 
Figure 7: Overall Classification Accuracy of the 

Classifiers 

Precision is the ratio of correctly classified instances for 

those instances that have been classified as positive. “Recall 

is merely equal to sensitivity in which the information 

retrieval is the fraction of the faults that are relevant to the 

query that are successfully retrieved. F-measure is defined 

as the equivalent resistance formed by sensitivity and 

precision positioned in parallel phase [28-32]. Matthews‟s 

correlation coefficient (MCC) is used to measure of the 

class of binary classifications. The MCC is in essence a 

correlation coefficient between the observed and predicted 

binary classifications; it returns a value between −1 and +1 

[33-37]. Precision-recall curve (PRC) area is used to predict 

the classification properties using precision and recall values 

[38-44]. It is more or less similar to receiver operating 

characteristics (ROC). ROC is a graphical representation 

that demonstrates the performance of a classifier as its 

discrimination threshold is varied.”  

 
Figure 8: Margin Curve for Class-Balanced Nested 

Dichotomy (CBND) 

 
Figure 9: Classifier Errors (Classification vs. 

Misclassification) 

VII. CONCLUSION 

The wind turbine is very important in the creation of wind 

energy in everyday life. This paper displayed an algorithmic 

based clarification of vibration signals for the evaluation of 

the wind turbine blade conditions. From the acquired 

vibration data, three model was developed using data 

modelling technique. These models were tested in 10-fold 

cross validation. All the classifiers were compared with 

respect to their types and maximum correctly classified 

instances were found to be 93.17% for class-balanced nested 

dichotomy (CBND). The error rate is relatively less and may 

be considered for the blade fault diagnosis. Hence, the class 

balanced nested dichotomy (CBND) algorithm can be 

practically used for the condition monitoring of wind turbine 

blade to reduce the downtime and to provide more wind 

energy. The methodology and algorithm suggested in this 

paper can be potentially used for any kind of wind turbine 

blade to diagnose the blade fault with minimal modification. 
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