
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S8, August 2019

1210

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10400882S819/2019©BEIESP

DOI:10.35940/ijrte.B1040.0882S819



Abstract— This paper elaborates the transition system that

gives the standard transition-based dependency parsing

techniques for generating the graph. It is essential to know the

standard transition techniques for all graphical problems. Cache

transition technique plays a vital role in optimizing the search

process in various text mining applications. This paper provides

an overview on cache transition technique for parsing semantic

graphs for several Natural Language Processing (NLP)

applications. According to this paper, the cache is having the fixed

size m, by tree decomposition theory according to which there is a

relationship between the parameter m and class of graphs

produced by the theory.

Keywords: Cache Transition Technique, Semantic Graphs,

Text Mining, Tree Width, Optimized Search Procedures

I. INTRODUCTION

The statistical methods were the conventional methods for

the natural language efficiency, but are renewed as the

algorithms to generate it. These algorithms are almost same

as the standard parsing algorithms for getting the syntactic

representations. This actually converts the input statement to

the graph representations. In recent years, a transition from

the chart-based syntactic parsers to stack-based transition

systems has increased the efficiency and speed of the

real-world applications.

The stack-based transition systems generate graphs than

trees by shifting one word at a time onto the stack and then

later building all possible arcs between each word on the

stack and keeping next word in the buffer. Here in this theory,

the graph theoretical notion of tree decomposition has been

developed independently in various areas of computer

science and discrete mathematics and has been proven useful

in discrete optimization and polynomial time algorithms.

1.1 Tree Decomposition and Tree width:

Below is the definition of the Tree Decomposition and

Treewidth which has been used along this article, the

undirected graph is denoted as G= (V, E) where V is the set of

vertices and E is the set of edges. Each edge is represented as

an unordered pair (u, v) with u, v ∈ V.

The basic idea for notion of tree decomposition is

explained as follows. A tree is a special type of graph was

Revised Version Manuscript Received on August 19, 2019.

Sajini G, Research Scholar, Department of Computer Science and

Engineering, M S Ramaiah Institute of Technology, Bangalore, Karnataka,

India. (email: sajini.narayana@gmail.com)

Jagadish S Kallimani, Associate Professor, Department of Computer

Science and Engineering, M S Ramaiah Institute of Technology, Bangalore,

India. (email: jagadish.k@msrit.edu)

vertices are kept in the hierarchical way with the property that

set of vertices in any sub tree have only one interconnection

with other vertices. But on the other hand, for general graphs

this is not possible and is possible for the graphs where each

vertex is interconnected with other vertices. Also, this holds

good for the grid-like graph. The notion of tree

decomposition of a graph and related notion of tree width

gives us the information we need.

The tree decomposition of a graph G is a type of tree

having a subset of G’s vertices at each node. In a tree

decomposition T, the set of nodes is denoted I and the set of

arcs is denoted F. The subset of V associated with node i ∈ I

is referred to as a bag, and is denoted by Xi. Formally, a tree

decomposition of a graph G = (V, E) is defined as a pair ({Xi

| i ∈ I}, T = (I, F)) where tree T satisfies all of the following

properties.

 Vertex cover: The nodes of the tree T cover all the

vertices of G: S i∈I Xi = V. r

 Edge cover: Each edge in G is included in some node of

T. That is, for all edges (u, v) ∈ E, there exists an i ∈ I with u,

v ∈ Xi . r

 Running intersection: The nodes of T containing a given

vertex of G form a connected sub tree. Mathematically, for all

i, j, k ∈ I, if j is on the (unique) path from i to k in T, then Xi T

Xk ⊆ Xj.

The width of a tree decomposition ({Xi}, T) is maxi |Xi | −

1. The treewidth of a graph is the minimum width over all

tree decompositions

 tw(G) = min ({Xi},T)∈TD(G) max i |Xi | − 1

where TD(G) is the set of valid tree decompositions of G.

they refer to a tree decomposition achieving the minimum

possible width as being optimal.

II. CACHE TRANSITION PARSER & RESULTS

This is a kind of non-deterministic computational model

for graph based parsing. This model takes a sequence of

vertices and reads from left to right. This model is based on

dependency tree parsing. Here the graph is defined on input

vertices, besides its stack and buffer it also uses cache which

is a fixed size array of elements. During the computation,

vertex in the storage will be either in stack or cache but not in

both simultaneously. The graph vertices of input buffer are

kept in cache before keeping in stack and these vertices can

Research on Cache Transition Techniques for

Semantic Graph Parsing for Optimizing Search

Process using Text Mining

Sajini G, Jagadish S Kallimani

mailto:ajini.narayana@gmail.com

RESEARCH ON CACHE TRANSITION TECHNIQUES FOR SEMANTIC GRAPH PARSING FOR OPTIMIZING

SEARCH PROCESS USING TEXT MINING

1211

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10400882S819/2019©BEIESP

DOI:10.35940/ijrte.B1040.0882S819

be directly accessed and edges between them are constructed

when in cache.

As the cache has fixed-size there should be a fixed number

of vertices present when constructing the edges. In order to

manage the huge number of vertices and to read the new

vertices, the other vertices are kept in buffer and those which

are kept in buffer are not accessible to build the edges.

The configuration of the parser can be written as follows,

C=(σ,η,β,E)

Where,

σ – Stack sequence of vertices and integers with topmost

element always at the rightmost position

η – Cache sequence of vertices.

β – Buffer sequence of vertices.

E- the set of edges being built.

The transitions are shown as follows

1. The Push:

This is the parameterized by a position in cache and a set of

positions in the cache. This can be represented as (i,C) where

i ϵ [m] and C is subset of [m]/{i}

It takes the configuration

Then moves to configuration

2. The Pop :

And moves to the configuration

Here, the vertex v from the stack is popped up, along with i

keeping the origin position in the cache. When we place v in

place of i in cache shifting is done.

Lemma 1

Any tree decomposition T of graph G can be transformed

into a smooth tree decomposition

T’ of G of equal width.

Proof:

Let k be the width of T. At each bag having fewer than k +

1 vertices, continue adding vertices from adjacent bags until

all bags have the same size. If two adjacent bags B1 and B2

end up having the same vertices, collapse B1 and B2 into a

single bag, and merge the children of the two bags in a way

that preserves their order. If two adjacent bags B1 and B2

differ by more than one vertex in their contents, add

intermediate bags by adding vertices from B2 and removing

vertices from B1 one at a time. Finally, choose a bag B as the

root of the tree constructed so far. Add a new root containing

k + 1 instances of the special symbol $, and intermediate bags

connecting the root to B adding one vertex of B at a time, and

removing instances of $.

Now its been introduced with the relative tree width in

order of the given order of the vertices of the graph.

Let ,

G=(V,E) be some graph

T some smooth tree decomposition of G

We define the vertex order π(T) of T to be the sequence of

vertices produced by visiting T in a preorder. Each vertex of

V will appear once in π(T). We need to analyze our parser

behavior when a fixed input order is given over the vertices in

terms of notion of relative treewidth.

We define the relative treewidth of G against to an order π

of G’s vertices to keep it minimum width of tree

decomposition of G with π order of vertices.

Lemma 2

Let c be a configuration of the parser with stack σ and

cache η. Let also γ be a minimal reversing sequence of

transitions. If we apply to c the transitions of γ in the given

order, we reach a configuration c' with stack σ'= σ and

cache η'= η.

Proof:

Let γ =t1….t2S. If s=1, γ is composed by a push and pop

respectively. The definition of pop transition exactly restores

the stack and cache of c configuration of push.

If s>1, let γ'=t2….t2S-1. If γ' is have an equal number of

push transitions and pop transitions and not making

minimal γ' reversing, then it is split at the point by providing

the same reasoning to the two subsequences until it

provides minimal reversing.

Assume, c1 is the configuration due to t1 applied to c and

c2S-1 is the configuration due to γ' applied to c1. On each of the

minimal reversing subsequences of γ' we get that the stack

and cache of c1 and c2s-1 are equal by using inductive

hypothesis. As they are same we can conclude that the pop

transition t2s applied to c2s-1 and produced with the same

configuration of c2s. This will suggest each node of the tree is

the configuration of the cache reached at some time step

while run. Each push transition is descended from one node

to some of its children of the tree, each pop

transition return back to its parent, this kind of tree structure

is called derivation tree and it represents the history of the

parsing process which produces the output graph.

 Lemma 3

Consider a cache transition parser with cache size m, and

consider a run of the parser with input a vertex sequence _

and with output the constructed graph G. Let T be

the derivation tree representing the run. Then T forms a

smooth tree decomposition of G having width m-1 and

having vertex order π(T)=π.

 Proof.

Each bag is first created by a push transition, which adds

one vertex to the cache and removes one vertex from the

cache. Because the bags of T have size m, the size of the

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S8, August 2019

1212

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10400882S819/2019©BEIESP

DOI:10.35940/ijrte.B1040.0882S819

cache, the width of T is m -1. Recall that the vertex

order π(T) is the sequence of vertices produced by visiting T

in a pre-order traversal and listing the vertices newly

introduced at the visited bags. Since the derivation tree T is

constructed depth first by pushing vertices from the input

buffer into the cache, π(T)is exactly the order of the vertices

in π.

Lemma 4

Consider a graph G with a smooth tree decomposition T

having width m-1, and let π(T) be the vertex order of T. Then

T is a derivation tree of a cache transition parser with cache

size m, and G is constructed by the associated run

given π(T)as input.

Proof.

Let the cache transition parser take a sequence of

transitions corresponding to a depth-first traversal of T,

pushing an element from π(T) into the cache each time

it descends one level in T, and popping each time it ascends.

Let (u, v) be an edge of G. Because T is a tree decomposition

of G, there is a bag of T containing both u and v. Without loss

of generality, let u be the vertex that was introduced before

v along the path from the root of T to the bag containing both

u and v. Let bv be the bag at which v is introduced. Because v

can only appear in bags in the subtree of T rooted at bv, this

bag containing both u and v must appear in this subtree.

Furthermore, by the running intersection property, since u

appears in a bag at or below bv, and is introduced above bv, u

must appear in bv. Thus, because bags of T correspond to the

cache at each step of the parser, the parser’s cache will

contain u at the step at which v is pushed into the rightmost

position of the cache. Therefore, the automaton can build

each edge of G. Combining all the 4 lemmas we can

formulate the theorems.

Theorem 1

Let G be some graph and let π be some ordering of its

vertices. The relative treewidth of G with respect to π is m-1

if and only if a transition parser with input π can construct G

using cache size m but not using cache size m-1. The

computational problem of deciding whether a transition

parser with cache size m and with input π can construct G

is treated. Furthermore, the problem of efficiently computing

the smallest cache size m that allows a transition parser

to construct G from input π is treated.

 Theorem 2

A graph G has tree width m-1 if and only if a transition

parser with cache size m can construct G for some input

ordering of G’s vertices, and for no ordering of G’s vertices a

transition parser with cache size m-1 can construct G.

Oracle Algorithm:

A cache transition computer program is a nondeterministic

automaton: For a fastened vertex sequence π, the computer

program may construct many graphs, all having tree

decompositions with vertex order π (see Lemma 4). Even for

a private graph G, there could also be many runs of the

computer program on π, every constructing G through a tree

decomposition having vertex order π. this is often typically

known as spurious ambiguity.

In this section we have a tendency to develop associate

formula that may be accustomed drive a cache transition

computer program with cache size m, in such a approach that

the computer program becomes settled. This suggests that at

the most one computation is feasible for every combine of G

and π. additional exactly, our formula takes as input a

configuration c of the computer program obtained once

running on π, and a graph G to be created. Then the formula

computes the distinctive transition that ought to be applied to

c so as to construct G per a canonical tree decomposition of

breadth m − one having vertex order π. If such tree

decomposition doesn't exist, then the formula fails at some

configuration obtained once running on π.

The oracle formulas will cross-check EG so as to choose

that transition to use at c, alternatively to choose that it ought

to fail. This call relies on 3 reciprocally exclusive rules, listed

below. Assume that c has cache η = [v1, . . . , vm] and buffer

β. The primary rule is given 1. If there's no edge (vm, v) in

EG such vertex v is in β, the oracle chooses transition pop.

This rule means that that, as before long as we have a

tendency to encounter a vertex in the right position of the

cache with no forward-pointing edges (in the input sequence

π) that square measure still un- processed, we have a

tendency to return to the stack and plan to method different

unfinished vertices.

Lemma5

Tree decomposition T of graph G will be remodeled into

associate eager tree decomposition T0 of G of equal breadth.

Moreover, we've got π(T0) = π(T).

Proof: as a result of T is swish tree decomposition, by Lemma

four there exists a cache transition computer program with

cache size equal to the breadth of T + one.

If the transitions of this run don't violate Rules one to three

within the definition of our oracle, then T is additionally

associate eager tree decomposition. Just in case the run shows

some violations of the 3 rules, we alter T so as to eliminate

these violations from the run, during a approach that doesn't

increase the width/cache size and preserves the order.

Suppose that our run contains some push transition that

happens once the right vertex v in the cache η has no

forward-pointing edge leading to some vertex in the buffer.

This represents a violation of Rule one of the oracle.

Let I be the set of nodes of T, and let i ∈ I be the node of T

with right vertex v within the cache, to that this push

transition applies; see Figure seven. If there square measure

many push transitions out of node i, people who represent a

violation of Rule one should all be sorted at the right. We

have a tendency to then opt for the right one. Let i1 ∈ I be the

node of T created by this push transition, and let T1 be the sub

tree of T unmoving at i1. The vertices of G that square

measure pushed into the cache within the run related to T1

cannot contain any neighbor of v. therefore v aren’t required

in T1. we will thus reattach sub tree T1 to the parent node of i,

p(i), in such the simplest way that i1 becomes the immediate

right relation of i; see once more Figure seven. what is more,

we have a tendency to will replace all occurrences of v in T1

RESEARCH ON CACHE TRANSITION TECHNIQUES FOR SEMANTIC GRAPH PARSING FOR OPTIMIZING

SEARCH PROCESS USING TEXT MINING

1213

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10400882S819/2019©BEIESP

DOI:10.35940/ijrte.B1040.0882S819

with copies of the vertex introduced at p(i). Let T0 be the tree

ensuing from the on top of transformation of T. as a result of

our transformation has not modified the dimensions of the

luggage of T, T0 continues to be a swish tree decomposition

of G, with identical breadth as T. Since our transformation

has moved T1 one level up in T while not “jumping over” the

other sub tree of T, we have a tendency to should have π(T0)

= π(T).

Note that this transformation of T has far from our run the

alleged violation of Rule one. Suppose currently that our run

violates Rule two of the oracle. as a result of the run produces

G, this will solely happen if the computer program doesn't

push into the stack the vertex from the cache that may be

required furthest within the future. Let then v1 be the vertex

that's pushed onto the stack, and let v2 = v1 be the vertex that

is required furthest in the future. Let additionally i1 ∈ I be the

node of T that is created at this step, and let T1 be the sub tree

of T unmoving at i1. as a result of v1 is far from the cache

once i1 is made, v1 doesn't seem anyplace in T1, and none of

the vertices that square measure pushed in T1 square measure

neighbors of v1 in G. If v1 isn't a neighbor of the vertices that

square measure pushed in T1, then v2 can't be a neighbor of

those vertices either, since v2’s initial neighbor happens

strictly when v1’s initial neighbor.

III. CONCLUSION

Our transition system is impelled by the task of linguistics

parsing of linguistic communication sentences, and that we

currently proceed to debate a number of the problems that

also got to be addressed in developing a sensible system

supported our framework. the firsttask is to develop a

machine learning system for predicting the parser’s next

actionat every step. The best cache size can got to be

determined through empirical observation, because it could

also be beneficial to trade off coverage of the tiny variety of

sentences requiring giant cache size so as to create the

prediction of programme actions a lot of correct. we have a

tendency to speculate that it will be fascinating to decompose

the push action into steps that 1st create the choice of whether

or not to push or pop, and so whether or not to make every of

the potential arcs among the cache severally, so as to cut back

the area of predictions at every step. In the literature on

dependency synchronic linguistics parsing, models of this

kind area unit referred to as arc-factored models and area unit

oftimes used. more experimentation are needed to work out

the best set of options and the simplest design for the machine

learning part.A attainable extension of our framework is that

the development of a dynamic programming formula to

permit economical exploration of the area of attainable runs

of a parser on Associate in Nursing input string. Intuitively,

totally different runs on constant string may share common

subparts. These subparts is computed just the once, and so

“shared” among totally different runs mistreatment dynamic

programming techniques. Dynamic programming algorithms

for transition-based dependency parsing are planned by

Huang and Sagae (2010) and Kuhlmann, Gomez-Rodrıguez,

and Satta (2011).

These algorithms may be extended to our system, that is

additionally basically stack-based. Dynamic programming

algorithms simulating transition-based parsers have tried

helpful in the realization of supposed dynamic oracles

(Goldberg, Sartorio, and Satta 2014) for transition-based

parsers, up parsing performance with relevance static oracles,

that is, oracles of the kind mentioned in Section four. what is

more, dynamic programming algorithms square measure at

the idea of the event of strategies for unattended learning,as

for instance the inside-outside formula (Charniak 1993).

Although we've got treated the input buffer as associate

degree ordering of the vertices of the final graph, this can be a

simplification of the matter setting of linguistics parsing for

human language technology.Given as input a sequence of

English words, the programme should additionally predict

that words correspond to zero, one, or additional vertices of

the ultimate graph, and presumably insert vertices not

resembling any English word. this might be accomplished

either by preprocessing the input string with a separate

conception identification part (Flanigan et al.2014), or by

extending the actions of the transition system to incorporate

moves inserting new vertices into the graph. we've got not

enclosed moves inserting new vertices, in order to alter our

exposition, however such moves wouldn't basically alter the

correspondence between parsing runs and tree

decompositions delineate during this article.The

correspondence between runs of our programme and tree

decompositions of the output graph permits for a particular

characterization of the category of graphs coated, as well as

straightforward associate degreed economical algorithms for

providing an oracle sequence of programme moves, and for

determinant the minimum cache size needed to hide an

information set. We find through an experiment that

linguistics graphs have low relative treewidth with

relevanceEnglish order, indicating that our parsing approach

provides a sensible methodology of exploiting the order in

linguistics parsing. Our conception of relative treewidth with

relevance a vertex order seems to be new within the graph

theory literature, and may have applications outside of

linguistic communication process. Our transition system was

primarily intended by these theoretical concerns, and lots of

different definitions are attainable. above all, our call that

vertices will solely be popped from the rightmost position

within the cache simplifies our analysis. Theoretical

characterization of, and experimentation with, the set of

different attainable transition systems for building graphs

may be a promising space for future analysis.

REFERENCES

1. Daniel Gildea, Giorgio Satta, Xiaochang Pengy,
University of Rochester Cache Transition Systems for
Graph Parsing, Association for Computational

Linguistics, 2017, doi:10.1162/COLI a 00308, Volume
44, Number 1.

2. Banarescu, Laura, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation for sembanking. In
Proceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 178–186,
Sofia.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S8, August 2019

1214

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10400882S819/2019©BEIESP

DOI:10.35940/ijrte.B1040.0882S819

3. Choi, Jinho D. and Andrew McCallum. 2013.
Transition-based dependency parsing with selectional
branching. In Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (ACL-13),
pages 1052–1062, Sofia.

4. Damonte, Marco, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of the 15th Conference of
the European Chapter of the Association for
Computational Linguistics (EACL), pages 536–546,
Valencia.

5. Du, Yantao, Fan Zhang, Weiwei Sun, and Xiaojun Wan.
2014. Peking: Profiling syntactic tree parsing techniques
for semantic graph parsing. In Proceedings of the 8th
International Workshop on Semantic Evaluation
(SemEval-2014), pages 459–464, Dublin.

6. Flanigan, Jeffrey, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the abstract meaning

representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics
(ACL-14), pages 1426–1436, Baltimore, MD.

7. Goldberg, Yoav, Francesco Sartorio, and Giorgio Satta.
2014. A tabular method for dynamic oracles in
transition-based parsing. Transactions of the Association
for Computational Linguistics, 2:116–130.

8. Flickinger, Dan, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: A dynamically annotated treebank of the Wall

Street Journal. In Proceedings of the 11th International
Workshop on Treebanks and Linguistic Theories, pages
85–96, Lisbon.

9. G´omez-Rodr ı́guez, Carlos and Joakim Nivre. 2013.
Divisible transition systems and multiplanar dependency
parsing. Computational Linguistics, 39:799–846.

