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 

Abstract— This paper elaborates the transition system that 

gives the standard transition-based dependency parsing 

techniques for generating the graph. It is essential to know the 

standard transition techniques for all graphical problems. Cache 

transition technique plays a vital role in optimizing the search 

process in various text mining applications. This paper provides 

an overview on cache transition technique for parsing semantic 

graphs for several Natural Language Processing (NLP) 

applications. According to this paper, the cache is having the fixed 

size m, by tree decomposition theory according to which there is a 

relationship between the parameter m and class of graphs 

produced by the theory. 

 

Keywords: Cache Transition Technique, Semantic Graphs, 

Text Mining, Tree Width, Optimized Search Procedures 

I. INTRODUCTION 

The statistical methods were the conventional methods for 

the natural language efficiency, but are renewed as the 

algorithms to generate it. These algorithms are almost same 

as the standard parsing algorithms for getting the syntactic 

representations. This actually converts the input statement to 

the graph representations. In recent years, a transition from 

the chart-based syntactic parsers to stack-based transition 

systems has increased the efficiency and speed of the 

real-world applications. 

The stack-based transition systems generate graphs than 

trees by shifting one word at a time onto the stack and then 

later building all possible arcs between each word on the 

stack and keeping next word in the buffer. Here in this theory, 

the graph theoretical notion of tree decomposition has been 

developed independently in various areas of computer 

science and discrete mathematics and has been proven useful 

in discrete optimization and polynomial time algorithms. 

1.1 Tree Decomposition and Tree width:  

Below is the definition of the Tree Decomposition and 

Treewidth which has been used along this article, the 

undirected graph is denoted as G= (V, E) where V is the set of 

vertices and E is the set of edges. Each edge is represented as 

an unordered pair (u, v) with u, v ∈ V. 

The basic idea for notion of tree decomposition is  

 

explained as follows. A tree is a special type of graph was  
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vertices are kept in the hierarchical way with the property that 

set of vertices in any sub tree have only one interconnection 

with other vertices. But on the other hand, for general graphs 

this is not possible and is possible for the graphs where each 

vertex is interconnected with other vertices. Also, this holds 

good for the grid-like graph. The notion of tree 

decomposition of a graph and related notion of tree width 

gives us the information we need. 

The tree decomposition of a graph G is a type of tree 

having a subset of G’s vertices at each node. In a tree 

decomposition T, the set of nodes is denoted I and the set of 

arcs is denoted F. The subset of V associated with node i ∈ I 

is referred to as a bag, and is denoted by Xi. Formally, a tree 

decomposition of a graph G = (V, E) is defined as a pair ({Xi 

| i ∈ I}, T = (I, F)) where tree T satisfies all of the following 

properties. 

 Vertex cover: The nodes of the tree T cover all the 

vertices of G: S i∈I Xi = V. r 

 Edge cover: Each edge in G is included in some node of 

T. That is, for all edges (u, v) ∈ E, there exists an i ∈ I with u, 

v ∈ Xi . r  

 Running intersection: The nodes of T containing a given 

vertex of G form a connected sub tree. Mathematically, for all 

i, j, k ∈ I, if j is on the (unique) path from i to k in T, then Xi T 

Xk ⊆ Xj.  

The width of a tree decomposition ({Xi}, T) is maxi |Xi | − 

1. The treewidth of a graph is the minimum width over all 

tree decompositions 

 tw(G) = min ({Xi},T)∈TD(G) max i |Xi | − 1  

where TD(G) is the set of valid tree decompositions of G. 

they refer to a tree decomposition achieving the minimum 

possible width as being optimal. 

II. CACHE TRANSITION PARSER & RESULTS 

This is a kind of non-deterministic computational model 

for graph based parsing. This model takes a sequence of 

vertices and reads from left to right. This model is based on 

dependency tree parsing. Here the graph is defined on input 

vertices, besides its stack and buffer it also uses cache which 

is a fixed size array of elements. During the computation, 

vertex in the storage will be either in stack or cache but not in 

both simultaneously. The graph vertices of input buffer are 

kept in cache before keeping in stack and these vertices can  
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be directly accessed and edges between them are constructed 

when in cache. 

As the cache has fixed-size there should be a fixed number 

of vertices present when constructing the edges. In order to 

manage the huge number of vertices and to read the new 

vertices, the other vertices are kept in buffer and those which 

are kept in buffer are not accessible to build the edges. 

The configuration of the parser can be written as follows, 

C=(σ,η,β,E) 

Where, 

σ – Stack sequence of vertices and integers with topmost 

element always at the rightmost position 

η – Cache sequence of vertices. 

β – Buffer sequence of vertices. 

E- the set of edges being built. 

The transitions are shown as follows 

1. The Push: 

This is the parameterized by a position in cache and a set of 

positions in the cache. This can be represented as (i,C) where 

i ϵ [m] and C is subset of [m]/{i} 

It takes the configuration 

 
Then moves to configuration 

 
2. The Pop : 

 
And moves to the configuration 

 
Here, the vertex v from the stack is popped up, along with i 

keeping the origin position in the cache. When we place v in 

place of i in cache shifting is done. 

Lemma 1 

Any tree decomposition T of graph G can be transformed 

into a smooth tree decomposition 

T’ of G of equal width. 

Proof: 

Let k be the width of T. At each bag having fewer than k + 

1 vertices, continue adding vertices from adjacent bags until 

all bags have the same size. If two adjacent bags B1 and B2 

end up having the same vertices, collapse B1 and B2 into a 

single bag, and merge the children of the two bags in a way 

that preserves their order. If two adjacent bags B1 and B2 

differ by more than one vertex in their contents, add 

intermediate bags by adding vertices from B2 and removing 

vertices from B1 one at a time. Finally, choose a bag B as the 

root of the tree constructed so far. Add a new root containing 

k + 1 instances of the special symbol $, and intermediate bags 

connecting the root to B adding one vertex of B at a time, and 

removing instances of $. 

Now its been introduced with the relative tree width in 

order of the given order of the vertices of the graph. 

Let , 

G=(V,E) be some graph 

T some smooth tree decomposition of G 

We define the vertex order π(T) of T to be the sequence of 

vertices produced by visiting T in a preorder. Each vertex of 

V will appear once in π(T). We need to analyze our parser 

behavior when a fixed input order is given over the vertices in 

terms of notion of relative treewidth.  

We define the relative treewidth of G against to an order π 

of G’s vertices to keep it minimum width of tree 

decomposition of G with π order of vertices.   

 

Lemma 2  

Let c be a configuration of the parser with stack σ and 

cache η. Let also γ be a minimal reversing sequence of 

transitions. If we apply to c the transitions of γ in the given 

order, we reach a configuration c' with stack σ'= σ and 

cache η'= η.  

Proof:   

Let γ =t1….t2S. If s=1, γ is composed by a push and pop 

respectively. The definition of pop transition exactly restores 

the stack and cache of c configuration of push.   

If s>1, let γ'=t2….t2S-1. If γ' is have an equal number of 

push transitions and pop transitions and not making 

minimal γ' reversing, then it is split at the point by providing 

the same reasoning to the two subsequences until it 

provides minimal reversing.  

Assume, c1 is the configuration due to t1 applied to c and 

c2S-1 is the configuration due to γ' applied to c1. On each of the 

minimal reversing subsequences of γ' we get that the stack 

and cache of c1 and c2s-1 are equal by using inductive 

hypothesis. As they are same we can conclude that the pop 

transition t2s applied to c2s-1 and produced with the same 

configuration of c2s. This will suggest each node of the tree is 

the configuration of the cache reached at some time step 

while run. Each push transition is descended from one node 

to some of its children of the tree, each pop 

transition return back to its parent, this kind of tree structure 

is called derivation tree and it represents the history of the 

parsing process which produces the output graph.  

 Lemma 3  

Consider a cache transition parser with cache size m, and 

consider a run of the parser with input a vertex sequence _ 

and with output the constructed graph G. Let T be 

the derivation tree representing the run. Then T forms a 

smooth tree decomposition of G having width m-1 and 

having vertex order π(T)=π.  

 Proof.   

Each bag is first created by a push transition, which adds 

one vertex to the cache and removes one vertex from the 

cache. Because the bags of T have size m, the size of the  
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cache, the width of T is m -1. Recall that the vertex 

order π(T) is the sequence of vertices produced by visiting T 

in a pre-order traversal and listing the vertices newly 

introduced at the visited bags. Since the derivation tree T is 

constructed depth first by pushing vertices from the input 

buffer into the cache, π(T)is exactly the order of the vertices 

in π.  

Lemma 4  

Consider a graph G with a smooth tree decomposition T 

having width m-1, and let π(T) be the vertex order of T. Then 

T is a derivation tree of a cache transition parser with cache 

size m, and G is constructed by the associated run 

given π(T)as input.  

Proof.   

Let the cache transition parser take a sequence of 

transitions corresponding to a depth-first traversal of T, 

pushing an element from π(T) into the cache each time 

it descends one level in T, and popping each time it ascends. 

Let (u, v) be an edge of G. Because T is a tree decomposition 

of G, there is a bag of T containing both u and v. Without loss 

of generality, let u be the vertex that was introduced before 

v along the path from the root of T to the bag containing both 

u and v. Let bv be the bag at which v is introduced. Because v 

can only appear in bags in the subtree of T rooted at bv, this 

bag containing both u and v must appear in this subtree. 

Furthermore, by the running intersection property, since u 

appears in a bag at or below bv, and is introduced above bv, u 

must appear in bv. Thus, because bags of T correspond to the 

cache at each step of the parser, the parser’s cache will 

contain u at the step at which v is pushed into the rightmost 

position of the cache. Therefore, the automaton can build 

each edge of G. Combining all the 4 lemmas we can 

formulate the theorems.  

Theorem 1  

Let G be some graph and let π be some ordering of its 

vertices. The relative treewidth of G with respect to π is m-1 

if and only if a transition parser with input π can construct G 

using cache size m but not using cache size m-1. The 

computational problem of deciding whether a transition 

parser with cache size m and with input π can construct G 

is treated. Furthermore, the problem of efficiently computing 

the smallest cache size m that allows a transition parser 

to construct G from input π is treated.  

 Theorem 2  

A graph G has tree width m-1 if and only if a transition 

parser with cache size m can construct G for some input 

ordering of G’s vertices, and for no ordering of G’s vertices a 

transition parser with cache size m-1 can construct G.  

Oracle Algorithm: 

A cache transition computer program is a nondeterministic 

automaton: For a fastened vertex sequence π, the computer 

program may construct many graphs, all having tree 

decompositions with vertex order π (see Lemma 4). Even for 

a private graph G, there could also be many runs of the 

computer program on π, every constructing G through a tree 

decomposition having vertex order π. this is often typically 

known as spurious ambiguity. 

In this section we have a tendency to develop associate 

formula that may be accustomed drive a cache transition 

computer program with cache size m, in such a approach that 

the computer program becomes settled. This suggests that at 

the most one computation is feasible for every combine of G 

and π. additional exactly, our formula takes as input a 

configuration c of the computer program obtained once 

running on π, and a graph G to be created. Then the formula 

computes the distinctive transition that ought to be applied to 

c so as to construct G per a canonical tree decomposition of 

breadth m − one having vertex order π. If such tree 

decomposition doesn't exist, then the formula fails at some 

configuration obtained once running on π. 

The oracle formulas will cross-check EG so as to choose 

that transition to use at c, alternatively to choose that it ought 

to fail. This call relies on 3 reciprocally exclusive rules, listed 

below. Assume that c has cache η = [v1, . . . , vm] and buffer 

β. The primary rule is given 1. If there's no edge (vm, v) in 

EG such vertex v is in β, the oracle chooses transition pop. 

This rule means that that, as before long as we have a 

tendency to encounter a vertex in the right position of the 

cache with no forward-pointing edges (in the input sequence 

π) that square measure still un- processed, we have a 

tendency to return to the stack and plan to method different 

unfinished vertices. 

Lemma5 

Tree decomposition T of graph G will be remodeled into 

associate eager tree decomposition T0 of G of equal breadth. 

Moreover, we've got π(T0) = π(T). 

Proof: as a result of T is swish tree decomposition, by Lemma 

four there exists a cache transition computer program with 

cache size equal to the breadth of T + one. 

If the transitions of this run don't violate Rules one to three 

within the definition of our oracle, then T is additionally 

associate eager tree decomposition. Just in case the run shows 

some violations of the 3 rules, we alter T so as to eliminate 

these violations from the run, during a approach that doesn't 

increase the width/cache size and preserves the order. 

Suppose that our run contains some push transition that 

happens once the right vertex v in the cache η has no 

forward-pointing edge leading to some vertex in the buffer. 

This represents a violation of Rule one of the oracle. 

Let I be the set of nodes of T, and let i ∈ I be the node of T 

with right vertex v within the cache, to that this push 

transition applies; see Figure seven. If there square measure 

many push transitions out of node i, people who represent a 

violation of Rule one should all be sorted at the right. We 

have a tendency to then opt for the right one. Let i1 ∈ I be the 

node of T created by this push transition, and let T1 be the sub 

tree of T unmoving at i1. The vertices of G that square 

measure pushed into the cache within the run related to T1 

cannot contain any neighbor of v. therefore v aren’t required 

in T1. we will thus reattach sub tree T1 to the parent node of i, 

p(i), in such the simplest way that i1 becomes the immediate 

right relation of i; see once more Figure seven. what is more, 

we have a tendency to will replace all occurrences of v in T1  
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with copies of the vertex introduced at p(i). Let T0 be the tree 

ensuing from the on top of transformation of T. as a result of 

our transformation has not modified the dimensions of the 

luggage of T, T0 continues to be a swish tree decomposition 

of G, with identical breadth as T. Since our transformation 

has moved T1 one level up in T while not “jumping over” the 

other sub tree of T, we have a tendency to should have π(T0) 

= π(T). 

Note that this transformation of T has far from our run the 

alleged violation of Rule one. Suppose currently that our run 

violates Rule two of the oracle. as a result of the run produces 

G, this will solely happen if the computer program doesn't 

push into the stack the vertex from the cache that may be 

required furthest within the future. Let then v1 be the vertex 

that's pushed onto the stack, and let v2 = v1 be the vertex that 

is required furthest in the future. Let additionally i1 ∈ I be the 

node of T that is created at this step, and let T1 be the sub tree 

of T unmoving at i1. as a result of v1 is far from the cache 

once i1 is made, v1 doesn't seem anyplace in T1, and none of 

the vertices that square measure pushed in T1 square measure 

neighbors of v1 in G. If v1 isn't a neighbor of the vertices that 

square measure pushed in T1, then v2 can't be a neighbor of 

those vertices either, since v2’s initial neighbor happens 

strictly when v1’s initial neighbor. 

III. CONCLUSION 

Our transition system is impelled by the task of linguistics 

parsing of linguistic communication sentences, and that we 

currently proceed to debate a number of the problems that 

also got to be addressed in developing a sensible system 

supported our framework. the firsttask is to develop a 

machine learning system for predicting the parser’s next 

actionat every step. The best cache size can got to be 

determined through empirical observation, because it could 

also be beneficial to trade off coverage of the tiny variety of 

sentences requiring giant cache size so as to create the 

prediction of programme actions a lot of correct. we have a 

tendency to speculate that it will be fascinating to decompose 

the push action into steps that 1st create the choice of whether 

or not to push or pop, and so whether or not to make every of 

the potential arcs among the cache severally, so as to cut back 

the area of predictions at every step. In the literature on 

dependency synchronic linguistics parsing, models of this 

kind area unit referred to as arc-factored models and area unit 

oftimes used. more experimentation are needed to work out 

the best set of options and the simplest design for the machine 

learning part.A attainable extension of our framework is that 

the development of a dynamic programming formula to 

permit economical exploration of the area of attainable runs 

of a parser on Associate in Nursing input string. Intuitively, 

totally different runs on constant string may share common 

subparts. These subparts is computed just the once, and so 

“shared” among totally different runs mistreatment dynamic 

programming techniques. Dynamic programming algorithms 

for transition-based dependency parsing are planned by 

Huang and Sagae (2010) and Kuhlmann, Gomez-Rodrıguez, 

and Satta (2011). 

These algorithms may be extended to our system, that is 

additionally basically stack-based. Dynamic programming 

algorithms simulating transition-based parsers have tried 

helpful in the realization of supposed dynamic oracles 

(Goldberg, Sartorio, and Satta 2014) for transition-based 

parsers, up parsing performance with relevance static oracles, 

that is, oracles of the kind mentioned in Section four. what is 

more, dynamic programming algorithms square measure at 

the idea of the event of strategies for unattended learning,as 

for instance the inside-outside formula (Charniak 1993). 

Although we've got treated the input buffer as associate 

degree ordering of the vertices of the final graph, this can be a 

simplification of the matter setting of linguistics parsing for 

human language technology.Given as input a sequence of 

English words, the programme should additionally predict 

that words correspond to zero, one, or additional vertices of 

the ultimate graph, and presumably insert vertices not 

resembling any English word. this might be accomplished 

either by preprocessing the input string with a separate 

conception identification part (Flanigan et al.2014), or by 

extending the actions of the transition system to incorporate 

moves inserting new vertices into the graph. we've got not 

enclosed moves inserting new vertices, in order to alter our 

exposition, however such moves wouldn't basically alter the 

correspondence between parsing runs and tree 

decompositions delineate during this article.The 

correspondence between runs of our programme and tree 

decompositions of the output graph permits for a particular 

characterization of the category of graphs coated, as well as 

straightforward associate degreed economical algorithms for 

providing an oracle sequence of programme moves, and for 

determinant the minimum cache size needed to hide an 

information set. We find through an experiment that 

linguistics graphs have low relative treewidth with 

relevanceEnglish order, indicating that our parsing approach 

provides a sensible methodology of exploiting the order in 

linguistics parsing. Our conception of relative treewidth with 

relevance a vertex order seems to be new within the graph 

theory literature, and may have applications outside of 

linguistic communication process. Our transition system was 

primarily intended by these theoretical concerns, and lots of 

different definitions are attainable. above all, our call that 

vertices will solely be popped from the rightmost position 

within the cache simplifies our analysis. Theoretical 

characterization of, and experimentation with, the set of 

different attainable transition systems for building graphs 

may be a promising space for future analysis.  
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