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Abstract--- The fast developing wind industry has revealed a 

requirement for more multifaceted fault diagnosis system in the 

segments of a wind turbine. “Present wind turbine researches 

concentrate on enhancing their dependability quality and 

decreasing the cost of energy production, especially when wind 

turbines are worked in off-shore places. Wind turbine blades are 

ought to be an important component among the other basic 

segments in the wind turbine framework since they transform 

dynamic energy of wind into useable power and due to 

environmental conditions, it get damage often and cause lack in 

productivity. The main objective of this study is to carry out a 

fault identification model for wind turbine blade using a machine 

learning approach through vibration data to classify the blade 

condition. Here five faults namely, blade bend, hub-blade loose 

connection, blade cracks, blade erosion and pitch angle twist 

have been considered. Machine learning approach has three 

steps namely feature extraction, feature selection and feature 

classification. Feature extraction was carried out by statistical 

analysis followed by feature selection using J48 decision tree 

algorithm. Feature classification was done using twelve rule 

based classifiers using WEKA. The results were compared with 

respect to the classification accuracy and the computational time 

of the classifier.” 

Keywords--- Condition Monitoring, Wind Turbine Blade, 

Statistical Features, Rule based Classifiers, Vibration Signals. 

I. INTRODUCTION 

Currently, wind is one of the renewable energy sources 

which has acquired enormous consideration in the energy 

market to moderate the frequently increasing universal 

necessity of fossil fuels and consequent disquiets about 

ecological issues. ―Though, bringing down the cost of wind 

energy production is a fundamental strategy for the 

development of wind energy industry in the subsequent eras. 

In such manner, the future of wind energy industry drives by 

means of bigger and more flexible wind turbines in remote 

areas, which are progressively offshore to benefit stronger 

and more unvarying wind conditions. Thus, both the size 

and locality factors becomes probably the most important 

factor and prompt to extended maintenance challenges [1]. 

In addition, high machine-driven stress is enforced on wind 

turbines because of extremely operational conditions and 

repeatedly varying loads. This high level of mechanical 

stress needs a high level of maintenance support while wind 
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turbines are exposed to high dependability and accessibility 

necessities. A favourable (machine learning) approach is 

added to provide a fault detection and fault diagnosis system 

effectively [2]. 

Many research work have being carrying out on fault 

identification on wind turbine blade. To name a few, Kusiak 

and Verma [3] done a work on a data-driven approach for 

monitoring blade pitch faults in wind turbines using 

machine learning approach.  

They conducted the study using bagging, artificial neural 

network (ANN), pruning rule based classification tree 

(PART), K-nearest neighbor (K-NN) and genetic 

programming (GP).  

They obtained the accuracy of about GP-74.7%, Bagging-

72.5%, PART-75.5%, ANN-76.2%, K-NN-73.5%. Bindi 

Chen et al., [4] conducted an experiment on wind turbine 

pitch faults prognosis using a-priori knowledge based 

adaptive neuro-fuzzy inference system (ANFIS) using 

SCADA data and obtained 88.30% classification accuracy.‖ 

A comparative study on wind turbine power coefficient 

estimation by soft computing methodologies was carried out 

by Shamshirband et al., [5]. ― 

In this study they used support vector regression (radial 

basis function), support vector regression (polynomial), 

ANFIS (adaptive neuro-fuzzy inference system), NN (neural 

network) algorithms for comparison. Correlation Coefficient 

of algorithms where found to be SVR (RBF)-0.997, SVR 

(Polynomial)-0.504, ANFIS-0.978, NN-0.922.Mark 

Mollineaux et al., [6] have done a work on damage 

detection methods on wind turbine blade testing with wired 

and wireless accelerometer sensors using benchmark data 

and autoregressive moving average (ARMA) and 

Continuous Wavelet Transform (CWT) used as modelling 

techniques. 

A study on wavelet transform based stress and time 

history editing of horizontal axis wind turbine blades was 

carried out by Pratumnopharat et al., [7].  

They used time correlated fatigue damage (TCFD), 

mexican hat wavelet (Mexh), meyer wavelet (Meyr), 

daubechies 30th order (DB30), morlet wavelet (Morl), 

discrete meyer wavelet (Dmey) for the classification of 

crack on blade.  

The accuracy they found to be TCFD-89.82%, Morl-

80.34%, Meyr-79.76%, Dmey-80.30%, Mexh-79.23%, 

DB30-80.81%. 
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Simon Hoell and Piotr Omenzetter [8] carried out a 

structural damage detection in wind turbine blades based on 

time series representations of dynamic responses using 

vibration data and cross-correlations, principal component 

analysis (PCA), genetic programming (GP) as the diagnostic 

algorithm. 

Damir et. al[9] has done a numerical models for robust 

shape optimization of wind turbine blades using 3D 

geometric modeller. ―A computational framework for the 

shape optimization of wind turbine blades is developed for 

variable operating conditions specified by local wind speed 

distributions.  

A classification of operating conditions of wind turbines 

for a class-wise condition monitoring strategy study was 

done by Jong et al., [10]. 

This paper presents a general method that can be used to 

classify the operating conditions of wind turbine in terms of 

rotor speed and power.  

This study used empirical probability density functions 

based method and Gaussian mixture model (GMM) based 

method. This paper presents performance evaluation of the 

proposed class-wise condition monitoring strategy using 

vibration signals. 

Numerous works were carried out using simulation 

analysis; however only few experimental analysis were 

performed for wind turbine blade condition monitoring. 

Machine learning technique was considered for wind turbine 

blade fault diagnosis; however, the usage was limited in 

literature [11]. 

 A very limited set of defects were considered for 

analysis. This is especially true in case of fault diagnosis of 

wind turbine blade.  

This study makes an attempt to find five different blade 

fault conditions by applying machine learning approach and 

statistical analysis. Figure 1 shows the methodology of the 

work done.‖ The contribution of the present study,  

 This study considers five faults (blade crack, 

erosion, hub-blade loose connection, pitch angle 

twist and blade bend) for wind turbine blade fault 

diagnosis. 

 Statistical feature extraction tool was used to extract 

the required features from the vibration signals.  

 J48 decision tree algorithm was used for feature 

selection. 

 This problem is modeled as a multiclass 

classification problem and attempts to classify using 

rule based machine learning classifiers. 

The rest of the paper is organized as follows. In section 2, 

the experimental setup and experimental procedure are 

explained.  

Section 3 presents the feature extraction process using 

statistical analysis. 

 The feature selection using J48 decision tree algorithm is 

presented in section 4. In section 5, the rule based classifiers 

used in the study were explained in detail. The results 

obtained from the classifiers and the discussion about their 

performance are presented in section 6. Conclusions are 

presented in the final section (section 7). 

 
Figure 1: Methodology 

II. EXPERIMENTAL STUDIES 

The main aim of this study is to identify whether the 

blades are in good condition or in defective condition. ―If it 

is defective, then the objective is to deduce the condition of 

fault. Referring to Figure 1, the first two blocks are 

described in the following sub sections, namely 

experimental setup and experimental procedure. The study 

was conducted on a test rig resting on a stationary stand 

[12]. 

2.1. Experimental Setup 

The experiment was carried out on a 50W, 12V variable 

wind turbine (MX- POWER, model: FP-50W-12V). The 

technical parameters of a wind turbine are given in Table 1.  

Table 1: Technical parameters of wind turbine 

Model FP-50W-12V 

Rated Power 50W 

Rated Voltage 12V 

Rated Rotating Rate 850r/m 

Start-up Wind Speed 2.5m/s 

Cut-in Wind Speed 3.5m/s 

Cut-out Wind Speed 15m/s 

Security Wind Speed 40m/s 

Rated Wind Speed 12.5m/s 

Engine Three-phase permanent magnet generator 

Rotor Diameter 1050mm 

Blade Material Carbon fiber reinforced plastics 
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The wind turbine was mounted on a fixed steel stand in-

front of the open circuit wind tunnel outlet. The wind tunnel 

speed ranges from 5m/s to 15 m/s and act as a wind source 

to start the wind turbine. The wind speed was varied 

continuously in order to simulate the environmental wind 

condition. Experimental setup is shown in Figure 2. 

Piezoelectric type accelerometer was used as transducer for 

acquiring vibration signals. It has high-frequency sensitivity 

for detecting faults. Hence accelerometers are widely used 

in condition monitoring. In this case, a uniaxial 

accelerometer of 500g range, 100 mV/g sensitivity, and 

resonant frequency around 40 Hz was used.  

The piezoelectric accelerometer (DYTRAN 3055B1) was 

mounted on the nacelle near to the wind turbine hub to 

record the vibration signals using an adhesive mounting 

technique. It was connected to the DAQ system through a 

cable. The data acquisition system (DAQ) used was NI USB 

4432 model. The card has five analog input channels with a 

sampling rate of 102.4 kilo samples per second with 24-bit 

resolution.  

The accelerometer is coupled to a signal conditioning unit 

which consists of an inbuilt charge amplifier and an 

analogue-to digital converter (ADC). From the ADC, the 

vibration signal was taken. These vibration signals were 

used to extract features through feature extraction technique. 

One end of the cable is plugged to the accelerometer and the 

other end to the AIO port of DAQ system. NI – LabVIEW 

was used to interface the transducer signal and the system 

(PC). 

 
Figure 2: Experimental Setup 

2.2. Experimental Procedure 

In the present study, three-blade variable horizontal axis 

wind turbine (HAWT) was used. Initially, the wind turbine 

considered was in good condition (free from defects, new 

setup) and the signals were recorded using the 

accelerometer. These signals were recorded with the 

following specification: 

1. Sample length:The sample length was chosen long 

enough to ensure data consistency; and also the 

following points were considered. Statistical 

measures are more meaningful, when the number of 

samples is sufficiently large. On the other hand, as 

the number of samples increases the computation 

time increases. To strike a balance, sample length of 

10000 was chosen.  

2. Sampling Frequency: The sampling frequency 

should be at least twice the highest frequency 

contained in the signal as per Nyquist sampling 

theorem. By using this theorem sampling frequency 

was calculated as 12 kHz (12000Hz). 

3. A number of signal samples: Minimum of 100 

(hundred) signal samples were taken for each 

condition of the wind turbine blade and the vibration 

signals were recorded by using NI LabVIEW. 

The vibration signals are acquired using DAQ. Data 

acquisition (DAQ) is the process of converting analog 

sampling signals to digital numeric values that can be 

manipulated by a computer. DAQ hardware is used hereto 

interface between the sensor signal and a PC. The following 

faults were simulated one at a time on a blade while other 

blades remain in good condition and the corresponding 

vibration signals were acquired. Figure 3 shows the different 

blade fault conditions which are simulated on the blade. 

  

Good condition blade Blade with crack 

 
 

Blade with pitch angle twist Blade with erosion 

  

Hub-blade loose connection 
Blade with bend (Top 

View) 

Figure 3: Various blade fault conditions 

a) Blade bend (BB): This fault occurs due to high-

speed wind and complex forces caused by the wind. 

The blade was made to flap wise bend with 10
0 

angle. 

b) Blade crack (BC-2): This occurs due to foreign 

object damage on blade while it is in operating 

condition. On blade, 15mm crack was made. 
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Figure 4: Time-domain signal plot  

 

c) Blade erosion (BE): This fault is due to the erosion 

of the top layer of the blade by high-speed wind. 

The smooth surface of the blade was eroded using 

emery sheet (320Cw) to provide an erosion effect on 

the blade. 

d) Hub-blade loose contact: This fault generally 

occurs on wind turbine blade due to over runtime. 

The connection between the hub and blade bolt was 

made loose to obtain this fault.  

e) Blade pitch angle twist (PAT): This fault occurs 

due to the stress on blade caused by high-speed 

wind. This makes the pitch get twisted and creates a 

heavy vibration to the framework.  To attain this 

fault, blade pitch was twisted about 12
0 

with respect 

to the normal blade condition. 

Figure 4 shows the rotational domain of the vibration 

signals of various blade conditions for one revolution of the 

wind turbine blade. The signal plot (Figure 4) shows the 

vibration acquired from good condition blade, blade bend, 

blade crack, pitch angle twist, hub-blade loose connection 

and blade erosion. This gives some basic idea about how the 

magnitude of the acquired vibration signal varies over time 

with respect to the faults that were simulated.‖ 

III. STATISTICAL FEATURE EXTRACTION 

The vibration signals were obtained for good and other 

faulty conditions of the blades. If the time domain sampled 

signals are given directly as inputs to a classifier, then the 

number of samples should be constant. ― 
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The number of signal samples obtained is a function of 

rotatory motion of the blade speed. Hence, it can't be used 

directly as the input to the classifier. However, a few 

features must be extracted before the classification process. 

Descriptive statistical parameters [13] such as sum, mean, 

median, mode, minimum, maximum, range, skewness, 

kurtosis, standard error, standard deviation and sample 

variance were computed to serve as features in the feature 

extraction process. 

 Sum: It is the sum of all feature values for each 

sample. 

 Mean: The arithmetic average of a set of values or 

distribution. 

 Median: Middle value sorting out the greater and 

lesser splits of a data set. 

 Mode: Most frequent value available in the data set. 

 Minimum value: It refers to the least signal point 

value in a given signal. 

 Maximum value: It refers to the extreme signal 

point value in a given signal. 

 Range: Difference in extreme and least signal point 

values for a given signal. 

 Skewness: Skewness illustrates the degree of 

irregularity of a distribution around its mean. The 

following formula was used for calculation of 

skewness. 

          
 

(   )(   )
∑(

    ̅

  
)
 

—(1) 

 Kurtosis: Kurtosis point toward the flatness or the 

spikiness of the signal. Its value is very low for 

normal condition of the blade and high for the faulty 

condition of the blade due to the spiky nature of the 

signal and ‗s‘ is the sample standard deviation 

          {
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 Standard error: Standard error is a measure of the 

amount of error in the prediction of y for an 

individual x in the regression, where x and y are the 

sample means and ‗n‘ is the sample size. 

               ( )  
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 Standard deviation: This is a measure of the actual 

energy or power content of the vibration signal. The 

following formula was used for calculation of 

standard deviation. 

                   ( )  √
 ∑ 

 
 (∑ )

 

 (   )
—(4) 

 Sample variance: It is the variance of the signal 

points and the following formula was used for 

calculation of sample variance. 

                
 ∑ 

 
 (∑ )

 

 (   )
—(5) 

 When the statistical feature extraction was 

completed, the features were chosen and feature selection 

method was carried out. The statistical features form the 

input to the feature selection method. With the selected 

feature, further classification was carried out.‖ 

IV. J48 DECISION TREE FEATURE 

SELECTION 

J48 decision tree algorithm is adapted from the C4.5 

algorithm in WEKA [14]. It consists of a number of 

branches, one root, a number of nodes, and a number of 

leaves. ―One branch is a chain of nodes from the root to a 

leaf, and each node involves one attribute. The occurrence 

of an attribute in a tree provides information about the 

importance of the associated attribute [15]. A decision tree 

is a tree based knowledge representation methodology used 

to represent classification rules. J48 decision tree algorithm 

is a widely used one to construct decision trees [16]. The 

procedure of forming the decision tree and exploiting the 

same for feature selection is characterized by the following: 

1. The set of features available at hand forms the input 

to the algorithm; the output is the decision tree.  

2. The decision tree has leaf nodes, which represent 

class labels, and other nodes associated with the 

classes being classified.  

3. The branches of the tree represent each possible 

value of the feature node from which they originate.  

4. The decision tree can be used to classify feature 

vectors by starting at the root of the tree and moving 

through it until a leaf node, which provides a 

classification of the instance, is identified.  

5. At each decision node in the decision tree, one can 

select the most useful feature for classification using 

appropriate estimation criteria. The criterion used to 

identify the best feature invokes the concepts of 

entropy reduction and information gain. 

Information gain measures how well a given attribute 

separates the training examples according to their target 

classification. The measure is used to select the candidate 

features at each step while growing the tree [17]. 

Information gain is the expected reduction in entropy caused 

by portioning the samples according to this feature.  

Information gain (S, A) of a feature A relative to a collection 

of examples S, is defined as: 

     (   )  

       ( )  ∑         ( )
|  |

| |
       (  )--(6) 

whereValue (A) is the set of all possible values for 

attribute A, and Sv is the subset of S for which feature A has 

value v.  

Note the first term in the equation for gain is just the 

entropy of the original collection S and the second term is 

the expected value of the entropy after S is partitioned using 

feature A. The expected entropy described by the second 

term is simply the sum of the entropies of each subset Sv, 

weighted by the fraction of samples |Sv|/|S| that belong to Sv. 

Gain (S, A) is, therefore, the expected reduction in entropy 

caused by knowing the value of feature A. Entropy is a 

measure of homogeneity of the set of examples and it is 

given by 

       ( )  ∑          
 
   --(7) 

where, c is the number of classes, Pi is the proportion of S 

belonging to class ‗i’.   
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The J48 decision tree algorithm has been applied to the 

problem of feature selection. The input to the algorithm is 

the set of statistical features described above and output of 

the decision tree shown in Figure 5. It is clearly shown that 

the top node is the best node for classification. The other 

features in the nodes of decision tree perform in descending 

order of significance. It is to be mentioned here that only 

features that contribute to the classification appear in the 

decision tree and other features do not contribute much.  

The features which have the less discriminating capability 

can be consciously discarded by deciding on the threshold. 

This concept is made use for selecting good features. The 

algorithm identifies the good features for the purpose of 

classification of the given training data set, and thus reduces 

the domain knowledge required to select good features for 

pattern classification problem [18]. Referring from Figure 5, 

one can identify the most dominating feature to represent the 

blade conditions are the sum, range, standard deviation, and 

kurtosis.‖ 

 
Figure 5: J48 Tree classification for feature selection  

V. RULE BASED FEATURE CLASSIFICATION 

The selected features are served as input to the classifiers. 

―The wind turbine blade fault diagnosis was carried out 

using conjunctive rule (CR), decision table (DT), decision 

table and Naive Bayes hybrid classifier (DTNB), JAVA 

implemented repeated incremental pruning to produce error 

reduction (JRip), non-nested generalized exemplars (NNge), 

one rule (OneR), projective adaptive resonance theory 

(PART), ripple down rule learner (Ridor), zero rule (ZeroR), 

fuzzy unordered rule induction algorithm (FURIA), 

modified learnable evolution model(MODLEM) and ordinal 

learning method (OLM) classifiers. 

5.1 Conjunctive Rule (CR) 

Conjunctive rule learner is one of the machine learning 

algorithms and is normally known as inductive learning. The 

goal of rule induction is generally to induce a set of rules 

from data that captures all generalizable knowledge within 

that data, and at the same time being as small as possible 

[19]. Classification in rule-induction classifiers is typically 

based on the firing of a rule on a test instance, triggered by 

matching feature values at the left-hand side of the rule [20]. 

Rules can be of various normal forms, and are typically 

ordered; with ordered rules, the first rule that fires 

determines the classification outcome and halts the 

classification process.‖ 

5.2 Decision Table (DT) 

Decision table (DT)builds a decision table majority 

classifier [21]. It evaluates feature subsets using best-first 

search and can use cross-validation for evaluation [22].  
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An option uses the nearest-neighbor method to determine 

the class for each instance that is not covered by a decision 

table entry, instead of the table‘s global majority, based on 

the same set of features. 

5.3 Decision Table and Naive Bayes Hybrid Classifier 

(DTNB) 

Decision table and Naive Bayes classifier (DTNB)is a 

hybrid classifier that combines a decision table with Naïve 

Bayes proposed by Hall and Frank [23]. ―The model is a 

Bayesian Network in which the conditional probabilities are 

represented with Decision Tables. In the DTNB algorithm, 

the attributes are divided into two subsets by applying the 

gain function. These two subsets are used to create Decision 

Tables and Naïve Bayes model, respectively. The algorithm 

is based on a forward selection procedure, where all 

attributes are initially modelled by Decision Trees and the 

selected attributes are provided to a Naïve Bayes model. In 

order to generate the overall class probability, the class 

probabilities estimated by Decision Tables and Naïve Bayes 

have to be combined [24]. 

5.4 JAVA implemented Repeated Incremental Pruning to 

Produce Error Reduction (JRip) 

JRip is a JAVA implemented Repeated Incremental 

Pruning to Produce Error Reduction (RIPPER) which was 

introduced by Cohen [25] to produce easily readable, fast 

and accurate rules from noisy and large data sets. The main 

idea of RIPPER approach is for seeking an initial set of rules 

and iteratively improving it by applying an optimization 

algorithm. Such modelling with determination of initial rule 

sets makes this approach effective and fast. The training set 

used in the rule induction process of this approach is split 

into two parts:  growing set and pruning set. The instances 

from the growing set are used to build a rule set that starts 

with an empty set. Once the rule is grown using the data 

from the first set, the instances from the pruning g data set 

are applied to advance the performance of the obtained set 

by pruning it [26].‖ 

5.5 Non-Nested Generalized Exemplars (NNge) 

Non -Nested Generalized Exemplars (NNge) is an 

extension of Nested Generalized Exemplars (NGE), which 

is also an extension to the nearest neighbor classification 

approach that learns incrementally from the examples.  

―NNGE was proposed by Martin [27] with the goal to solve 

the overgeneralization problem in the NGE method, which 

leads to the poor performance. The NNge creates a new 

generalization each time a new in stance is added to the 

system by distributing it to the nearest neighbor of the same 

class [28]. 

5.6 One Rule (OneR) 

One-R is one of the most widely applied rule-based 

classifiers due to its simplicity and agility which was 

proposed by Holte [29]. Based on a one level decision tree, 

this machine learning algorithm attempts to classify the 

instances by using the value of single attributes. In spite of 

the accepted lack in accuracy of this classifier, simplicity 

and speed of this approach make it as a crucial alternative to 

more complex rule based models [30]. Distinguished from 

other classifiers that use entropy measures to classify the 

instances, One-R classifier uses the error rate obtained from 

the training set. The proposed algorithm develops a rule for 

each individual predictor in the training set and determines 

the one rule with lowest error rate.  

5.7 Projective Adaptive Resonance Theory (PART) 

Frank and Witten [31] proposed an algorithm based on 

partial decision trees, PART, which differs from other 

alternatives in way that the rules are generated. The PART 

algorithm is a combination of C4.5 decision tree and 

RIPPER algorithms. Distinguished from other rule induction 

classifiers, the PART algorithm doesn‘t perform global 

optimization when inducing the rules, which makes it simple 

and fast. The working principle of this approach is based on 

separate and conquer strategy, as follows: the first rule is 

derived, instances covered by this rule are removed and 

recursively other rules are generated until there are no more 

instances remaining [32].‖ 

5.8 Ripple Down Rule Learner (Ridor) 

Ripple down rule learner (Ridor) is a rule induction 

algorithm that is similar to PART and C4.5 approaches, but 

derives rules directly using Cendrowska‘s Prism algorithm 

in order to deal with noisy data. ―The Ridor approach is 

developed by Gaines [33]. The algorithm initially derives a 

rule that is followed by determination of exception to the 

defined rule using a least weighted error rate. For each 

exception the algorithm determines the most appropriate 

exception and this process continues recursively until all 

instances are covered. Derivation of exception can be also 

seen as tree algorithm where the exceptions are sets of rules 

for classification of classes [34]. 

5.9 Zero Rule (ZeroR) 

Zero rule classifier (ZeroR) is a learner used to test the 

results of the other learners. ZeroR chooses the most 

common category all the time [35]. ZeroR learners are used 

to compare the results of the other learners to determine if 

they are useful or not, especially in the presence of one large 

dominating category [36]. 

5.10 Fuzzy Unordered Rule Induction Algorithm (FURIA) 

Fuzzy Unordered Rules Induction Algorithm (FURIA) is 

an extension of the state-of-the-art rule learning algorithm 

called RIPPER [37] having its advantages such like simple 

and comprehensible fuzzy rule base, and introducing new 

features. FURIA provides three different extensions of 

RIPPER: (i) it takes an advantage of fuzzy rules instead of 

crisp ones, (ii) it applies unordered rule sets instead of rule 

lists, and (iii) it proposes a novel rule stretching method in 

order to manage uncovered examples [38-39].‖ 

5.11 Modified Learnable Evolution Model (MODLEM) 

The rule induction algorithm, called Modified Learnable 

Evolution Model (MODLEM), has been introduced by 

Stefanowski [40]. ―It is based on the scheme of a sequential 

covering and it heuristically generates a minimal set of 

decision rules for every decision concept (decision class or 

its rough approximation in case of inconsistent examples). 
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 Such a set of rules attempts to cover all (or the most 

significant) positive examples of the given concept and not 

to cover any negative examples (or as little as possible of 

them). The main procedure for rule induction scheme starts 

from creating a first rule by choosing sequentially the ‗best‘ 

elementary conditions according to chosen criteria [41]. 

5.12 Ordinal Learning Method (OLM) 

The ordinal learning model (OLM) [42] is a very simple 

algorithm that learns ordinal concepts by eliminating non-

monotonic pairwise inconsistencies. The generated concepts 

are rules. During learning, each example is checked against 

every rule in a rule-base, which is initially empty. If an 

example is in consistent with a rule in the rule-base, one of 

them is selected at random while the other is discarded, but 

if the example is selected, it must be checked for 

consistency against all the other rules for monotonicity. If it 

passes this consistency test, it is added as a rule. 

Consequently the rule-base is kept monotonic at all times. 

Classification is done conservatively. All the rules are 

checked in decreasing order of class values against an 

attribute vector, and the vector is classified to the class of 

the first rule that covers it. If such a rule does not exist – the 

attribute vector is assigned the lowest possible class. It has 

been shown both theoretically and empirically that the OLM 

results in very few classification rules while learning from 

noisy ordinal datasets [43].‖ 

VI. RESULTS AND DISCUSSION 

The vibration signals were noted for good condition blade 

and other fault conditions of wind turbine blade using DAQ. 

―Totally 600 signal samples were collected; 100 signal 

samples from each condition were collected. The statistical 

features were extracted as features and serves as input to the 

algorithm. The corresponding condition of the classified 

data will be the required output of the algorithm. From 

vibration signals, twelve descriptive statistical features were 

extracted. Out of theses twelve features, four best 

contributing features were selected using J48 decision tree 

algorithm. They are the sum, range, standard deviation, and 

kurtosis. From Figure 5, the feature ‗sum‘ is the most 

contributing features when compared to other features.  

The other contributing features are range, standard 

deviation, and kurtosis. The minimum number of instances 

per leaf and the number of data used for reduced-error 

pruning was kept at 50 for selecting 4 dominating features in 

J48 decision tree algorithm. The rest of the features like 

mean, median, mode, minimum, maximum, skewness, 

sample variance and standard error were eliminated as they 

contribute very less in fault classification. In Figure 6, the 

number of features vs classification accuracy is presented. 

The classification accuracy during the feature selection 

process using J48 decision tree algorithm is 86.67%. Other 

feature combinations did not perform well (Figure 6). 

Hence, sum, range, standard deviation, and kurtosis were 

chosen. Then, these selected features were given as input to 

the classifier to determine the classification accuracy.  

 
Figure 6: Classification accuracy for number of features 

In Figure 6, the number of features vs classification 

accuracy is presented. The classification accuracy during the 

feature selection process using J48 decision tree algorithm is 

86.67%. Other feature combinations did not perform well 

(Figure 6). Hence, sum, range, standard deviation, and 

kurtosis were chosen. Then, these selected features were 

given as input to the classifier to determine the classification 

accuracy. From Figure 6, the selected features were given as 

the input to rule based classifiers like conjunctive rule (CR), 

decision table (DT), decision table and Naive Bayes hybrid 

classifier (DTNB), JAVA implemented repeated 

incremental pruning to produce error reduction (JRip), non-

nested generalized exemplars (NNge), one rule (OneR), 

projective adaptive resonance theory (PART), ripple down 

rule learner (Ridor), zero rule (ZeroR), fuzzy unordered rule 

induction algorithm (FURIA), modified learnable evolution 

model (MODLEM) and ordinal learning method (OLM) 

classifiers. 

When comparing these twelve algorithm (from Table 2), 

one can find that the FURIA gives the maximum 

classification accuracy (87.50%) when compared to other 

classifiers. 

 In FURIA algorithm, the T-Norm that is used with fuzzy 

AND operator has been chosen as standard condition for the 

classifier to perform.  

The error rate of ≥1/2 is included as the stopping criteria 

with the batch size of 100. The amount of data used as 

pruning by the classifier is 3 along with the minimum total 

number of weight in the rule was set to be 2. For the 

uncovered instances, the rule stretching sub classifier has 

been assigned with respect to the decision carried out by the 

FURIA classifier.  

The computational time taken by the FURIA classifier for 

creating a model for fault identification and detection is 

about 0.12s.‖ 
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Table 2: Classification Accuracy of Rule based 

Classifiers 

Classifiers 
Classification 

Accuracy (%) 

Computational 

Time (s) 

Conjunctive 

Rule 
33.17 0.02 

Decision 

Table 
84.00 0.05 

DTNB 83.50 0.17 

JRip 84.17 0.11 

NNge 85.33 0.06 

OneR 60.33 0.01 

PART 85.00 0.02 

Ridor 84.67 0.13 

ZeroR 16.67 0.01 

FURIA 87.50 0.12 

MODLEM 87.17 0.21 

OLM 21.83 0.02 

The first row of the confusion matrix, Table 3, represents 

good condition. ―The first element (location (1, 1)) 

represents the number of correctly classified instances 

belonging to the same. The second element (location (1, 2)) 

represents the number of good instances that were 

incorrectly classified as bend fault condition (bend). The 

third element (location (1, 3)) represents the number of good 

instances that were incorrectly classified as crack fault 

condition (crack). The fourth element (location (1, 4)) 

represents the number of good instances that were 

incorrectly classified as hub-blade loose fault condition 

(loose). The fifth element (location (1, 5)) represents the 

number of good instances that were incorrectly classified as 

pitch angle twist fault condition (pitch twist). The sixth 

element (location (1, 6)) represents the number of good 

instances that were incorrectly classified as erosion fault 

condition (erosion). Similarly, the second row represents the 

second condition i.e bend fault condition. The third row 

represents the data points for third condition, i.e. crack fault 

condition. The fourth row represents the data points for 

fourth condition, i.e. hub-blade loose fault condition. The 

fifth row represents the data points for fourth condition, i.e. 

pitch angle twist fault condition. The sixth row represents 

the data points for fourth condition, i.e. erosion fault 

condition. 

Table 3: Confusion matrix for FURIA algorithm 

Blade 

condition

s 

Goo

d 

Ben

d 

Crac

k 

Loos

e 

Pitc

h 

twist 

Erosio

n 

Good 82 0 1 17 0 0 

Bend 0 90 5 0 0 5 

Crack 0 9 86 5 0 0 

Loose 14 0 6 80 0 0 

Pitch 

twist 
0 0 0 0 98 2 

Erosion 0 7 1 0 3 89 

The confusion matrix of FURIA is shown in Table 3. In 

confusion matrix, the diagonal elements represent the 

correctly classified instances and the others are misclassified 

ones. In FURIA algorithm, out of 600 samples, 525 samples 

were correctly classified (87.50%) and remaining 75 were 

misclassified (12.50%). Also one can observe more 

misclassifications between good and loose conditions. For 

the loose condition, the bolts between the hub and the blade 

were made loose (please note that the blade was in good 

condition). However, at high wind speed, the blade can stick 

to the hub and behave like a good condition during 

operation. Because of this, the signature of the loose 

condition sometimes resembles good condition and the 

classifier finds difficult to distinguish between them; hence, 

more misclassifications.  

Table 4: Class-wise accuracy of FURIA 

Class 
TP 

Rate 

FP 

Rate 

Precisio

n 

Recal

l 

F-

Measur

e 

RO

C 

area 

Good 
0.82

0 

0.02

8 
0.854 0.820 0.837 

0.93

0 

Bend 
0.90

0 

0.03

2 
0.849 0.900 0.874 

0.95

7 

Crack 
0.86

0 

0.02

6 
0.869 0.860 0.864 

0.93

1 

Loose 
0.80

0 

0.04

4 
0.784 0.800 0.792 

0.89

9 

Pitch 

twist 

0.98

0 

0.00

6 
0.970 0.980 0.975 

0.98

7 

Erosio

n 

0.89

0 

0.01

4 
0.927 0.890 0.908 

0.96

3 

From FURIA, the kappa statistics were found to be 0.85. 

It is used to measure the arrangement of likelihood with the 

true class.  The mean absolute error was found to be 0.0469. 

It is a measure used to measure how close forecasts or 

prediction are with the ultimate result [44]. The root mean 

square error was found to be 0.1951. It is a quadratic scoring 

rule which processes the average size of the error. The 

relative absolute error was found to be 16.8987 % and the 

root relative squared error was 52.3636 %. The time taken to 

build the model is about 0.12s; hence, this can be used in 

real time for the fault detection on the wind turbine blade. 

The detailed class-wise accuracy is shown in Table 4. The 

class-wise accuracy is expressed in terms of the true positive 

rate (TP), false positive rate (FP), precision, recall and F-

Measure [45].‖ 

TP is used to predict the ratio of positives which are 

correctly classified as faults. FP is commonly described as a 

false alarm in which the result that shows a given fault 

condition has been achieved when it really has not been 

achieved [46]. ―The true positive (TP) rate should be close 

to 1 and the false positive (FP) rate should be close to 0 to 

propose the classifier is a better classifier for the problem 

classification [47]. In FURIA, it shows that the TP near to 1 

and FP close to 0, hence one can conclude that the classifier 

built for the specific problem is effective for the fault 

diagnosis problem. Precision is the probability of retrieved 

instances that are relevant for the class. That is, it is the ratio 

of true positive (TP) to the retrieved instances (TP+FP). It is 

stated as 
  

     
 . Precision is also called as the positive 

predictive value and can be defined as a measure of 

exactness or quality [48].  
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Figure 7: Classifier Errors (Classification vs Misclassification) 

The recall is the information retrieval which shows the 

probability of the faults that are relevant to the classification 

that is successfully retrieved. That is the ratio of true 

positive (TP) to the overall instances (TP+FN) [49]. False 

negative (FN) is considered as type 2 error in which the 

instances indicates the misclassification but it is actually 

correctly classified. It is stated as 
  

     
 . Recall is also 

called as the measure of completeness or quantity. F-

measure is defined as the harmonic mean of both recall and 

precision [50]. That is, this measure is approximately the 

average of the two (recall and precision) when they are 

close, and is more generally the square of the geometric 

mean divided by the arithmetic mean. The f-measure is 

expressed as   
                

                
 . The classifier error chart is 

shown in Figure 7. Here the squared dots represent the 

misclassification and the ‗x‘ denotes the correct 

classification.‖ 

VII. CONCLUSION 

The wind turbine is very much essential in the production 

of wind energy in our day-to- day life. ―This paper 

represents an algorithmic based interpretation of vibration 

signals for the valuation of wind turbine blade conditions. 

From the acquired vibration data, twelve rule based model 

have been developed using data modelling technique. From 

twelve, fuzzy unordered rules induction algorithm 

(FURIA)provide the maximum classification accuracy of 

87.50% for the prediction of blade fault condition in wind 

turbine. The model is tested under 10-fold cross validation. 

The error rate is relatively less and FURIA may be 

considered for the blade fault diagnosis. Hence, fuzzy 

unordered rules induction algorithm (FURIA) can be 

practically used for the condition monitoring of wind turbine 

blade to reduce the downtime and to maximize the usage of 

wind energy. The methodology and algorithm suggested in 

this paper can be potentially used for any kind of wind 

turbine blade to diagnose the blade fault with minimal 

modification.‖ 
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