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 

Abstract—This paper presents the application of artificial 

neural networks (ANNs) for meander line modeling. In this work, 

meander lines on microstrips will be investigated to determine a 

correlation between the physical parameters and the propagation 

delay of the lines. The simulation of the meander lines is done 

using the Momentum electromagnetics simulator in Keysight’s 

Advanced Design System (ADS) to generate the S-parameters 

which will be used in a transient simulation to determine the 

propagation delay. Neural network models are then created for 

propagation delay prediction. Finally, both the ADS and ANN 

results for simulated delay times of meander lines are compared to 

validate the performance and to justify the proposed method. 

Results show that the ANN model is able to accurately predict the 

delay of the meander lines with an accuracy above 99.5% with a 

speed-up of over 2000×. 

 

Index Terms: Artificial Neural Network, Meander Lines, 

Propagation Delay, S-parameters 

I. INTRODUCTION 

Artificial neural networks (ANN) have been widely used 

in the modeling and simulations of various fields. ANN is an 

information-processing system that is modeled after the 

neuronal structure of the human brain. ANN resembles the 

brain in two aspects: (1) the ability to acquire knowledge 

through a learning process by the network, and (2) the storage 

of the knowledge in the interneuron connection strengths 

known as synaptic weights [1]. ANNs are known to possess 

many desirable characteristics such as the ability to model 

high nonlinearities, high parallelism, fault and noise 

tolerance, and good generalization capabilities. A good 

generalization is achieved when the neural model can 

perform well on data that is never used during the training 

and development process of that model. Neural networks 

have been used in many microwave applications such as in 

modeling of microstrip filters [2-5], power amplifiers [6], 

transmission lines [7], and microstrip antennas [8]. More 

recently, ANNs have also been used in signal integrity 

applications such as in predicting the eye-heights and widths 

in high-speed digital signals [9-14]. 

 

Meander lines, also called serpentine lines are a class of 
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transmission lines which are often used in printed circuit 

board to match the delays in multiple lines such as in a clock 

distribution circuit or in a differential signaling pair. The 

additional bends in the meander lines introduce an additional 

delay to the signal which is calculated to match the delay in 

the other paths for timing synchronizations. However, due to 

the coupling and crosstalk effects between adjacent bends, 

the delay of meander lines is often much shorter than the 

actual delay of a straight line of equal length. Thus it is 

important to model these effects accurately in order to 

precisely predict the delay of a meander line. 

Recently, the modeling of meander lines has received 

considerable attention. Multiple studies have been done to 

investigate the effects of the physical parameters on the 

actual delay of the meander line [15-18]. While these studies 

have yielded guidelines on designing meander lines to fit a 

particular need, these guidelines are heuristics at best and rely 

on developers experience and engineering know-hows. 

Furthermore, there is still no improvement in terms of the 

meander line simulation and analysis.  

The common standard in the industry is to perform a full 

wave electromagnetic (EM) modeling using a 

computer-aided design (CAD) tool [19]. These tools can give 

accurate results but they require a lot of time and high 

computing power. Furthermore, the design process normally 

involves iterating the design parameters until the final result 

is realized, often with only slight changes in each step. With 

the increasing complexity of the EM circuits, there is a need 

for researchers to look for alternative approximation 

techniques in modeling and simulation. 

 In this work, ANNs are used to model the physical 

relationships between the meander lines and the delay. Once 

the neural network is properly trained, it can be used 

repeatedly to provide fast and accurate solutions for 

microwave design problems. This simplifies the design 

process and the trained neural network can provide very 

accurate results many times faster than conventional EM 

simulations. 

II. MULTILAYER PERCEPTRON 

Multilayer perceptron (MLP) is a class of feedforward 

ANN with an input layer, an output layer, and at least one 

hidden layer. Fig. 1 shows an example of a three layered MLP  
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with two input neurons, four hidden neurons and an output  

neuron. Computations are performed from the input layer to 

the output layer and each neuron has an associated weight 

and bias values which are eventually summed up to produce a 

weighted sum of its inputs which is then passed through an 

activation function to determine if a neuron should fire. 

Usually, the neurons of the hidden layers have non-linear 

activation functions which are continuously differentiable 

such as the tansig function defined as follows:  

  

  2

2
1,

1 x
x

e



 


 (

1) 

 

whereσ(x) denotes the activation function and its output 

ranges from -1 to 1. The input and output neurons on the 

other hand normally have linear activation functions. 

 

 
Fig. 1. Example MLP structure 

 

 
Fig. 2.Tansig activation function 

 

Before a neural network can be used, it must be properly 

trained. There are a variety of ways to train a neural network 

such as by using the gradient descent, conjugate gradient, 

Newton method or Levenberg-Marquardt algorithm. The 

readers are referred to the reference [20] for more 

information about computation and learning of neural 

networks. In this paper, Levenberg Marquardt is used as the 

training algorithm. The neural network weights are initialized 

using the Nguyen-Widrow method [21] 

One of the most important parts during neural network 

design is to decide the number of hidden neurons. If the 

number of neurons in the hidden layer is too small, the 

network may not be powerful enough to meet the desired 

requirements. This problem is called underfitting and it can 

be indicated by poor training and validation performances. 

On the other hand, a large number of hidden neurons can 

cause very long training and recall time [22]. Also, a neural 

network with too many hidden neurons is prone to overfitting, 

where it is able to perform very well on training data but has 

large errors on testing data [23]. The overfitting problem can 

be indicated by good training performance but poor 

validation performance. A good learning is achieved when 

the neural network has good training and validation 

performances. Hence, there is a tradeoff in the number of 

hidden neurons to achieve a correct balance between 

performance and simulation cost. In this work, an iterative 

approach is used to find the optimum number of hidden 

neurons. First, Ntrial neural models with number of hidden 

neurons H = Hmin (typically 1) are created. The process is then 

repeated by increasing H by 1 until H = Hmax, 
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whereNtrain is the total number of training samples, O is the 

number of output neurons, I denotes the number of input 

neurons and ceil(.) is a rounding towards positive infinity. 

For each network, a test error is calculated and the neural 

model with the lowest validation error is selected as the final 

design. Typically, each neural network training session starts 

with different initial conditions due to the randomness 

present in the weight initialization. Hence, it is important to 

create multiple neural models so that a good generalization 

can be found. The pseudo-code for determining the number 

of hidden neurons is shown below: 

 

1 for H = Hmin:dH:Hmax 

2  for index = 1:Ntrials 

3   net = neural model with H hidden neurons 

4   Design net with training data. 

5   Compute validation data from validation 

data. 

6  end 

7 end 

8 bestNeuralModel = net with lowest validation error 

III. MEANDER LINES 

Serpentine lines have been widely used in printed circuit 

boards (PCB) to provide the required timing delays for timing 

margin management. Nevertheless, as the processor speed 

and clock frequency increases, conventional circuits such as 

delay lines have to be considered as distributed elements. 

Full-wave electromagnetics simulation tools provide an 

accurate analysis of these microwave structures, but they are 

also computationally expensive and slow. In [15], a detailed 

study about meander lines is conducted. From the study, it 

can be observed that a straight line has more delay compared 

to serpentine segments designed with the same conductor 

length. This is due to the cross-talk coupling between the 

segments. In the case of the straight line structures, the 

electric fields are mostly directed to the ground. On the other 

hand, in serpentine segments, due to cross-talk effects, the 

electric fields get coupled to the adjacent segment causing the  
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reduction in delay. 

Fig. 3 shows an example of a top view of a meander 

microstrip line structure. As discussed above, 

implementation of the meander line without careful design 

considerations may lead to timing violations due to 

unaccounted delay variations. Some of the critical parameters 

to be considered when designing the meander line include the 

line length, line width, spacing, number of bends, and types 

of bends. Furthermore, the substrate thickness, dielectric of 

the substrate, and rise time of signals will also affect the 

propagation delay. In this work, the segment length and 

segment spacing are varied, while the other parameters are 

held constant. This is typical in a design scenario where the 

board materials and signaling speed are decided beforehand 

based on the other processes. The readers are referred to 

references [24-26] for more background on meander line. 

 

 
Fig. 3.Meander line structure 

IV. DATA COLLECTION AND NEURAL MODEL 

TRAINING  

In order to train the ANN, multiple meander lines are 

simulated using the Momentum EM simulator in Keysight’s 

Advanced Design System (ADS). In each case, the 

S-parameters which represent the behavior of the lines are 

extracted. In this work, two cases are investigated; (a) Case 1: 

Effect of segment length on propagation delay time and (b) 

Case 2: Effect of segment spacing on propagation delay time. 

In all simulations, the impedances of both ports are specified 

at 50 Ω. The width of the line is also calculated such that the 

impedance of the line is 50 Ω to match the impedances of the 

ports. The number of turns for the meander lines is set to 12 

bends. The type of bend chosen is the right-angle bend as it is 

more easily fabricated in the industry. 

The microstrip substrate parameters are set where the 

substrate thickness is 0.813 mm, the relative dielectric 

constant,    is 3.38, relative permeability is 1, line width is 

1.84 mm and the thickness of the conductor is 0.03556 mm. 

The layout of the meander line from the Momentum EM 

software is shown in Fig. 4. A frequency domain simulation 

is performed from 0 GHz to 10 GHz with a step of 0.01 GHz. 

Fig. 5 shows the plot of the S-parameters from the 

Momentum EM simulation compared with a simulation using 

a circuit level modeling. While the plots both show the same 

characteristics, there is a slight difference as the circuit model 

does not account for the couplings as accurately as the 

full-wave Momentum simulation. 

 

 
Fig. 4.Layout of the meander line structure 

In order to determine the delay of the lines, the 

S-parameters are then used in a step voltage transient 

simulation as shown in Fig. 6. A step voltage source with a 

minimum voltage of 0 V, maximum voltage of 1 V and rise 

time of 1 ns is used. The voltage waveform at port 1 and port 

2 are captured to determine the propagation delay of the 

meander line. This is visualized in Fig. 7. During simulation, 

several physical parameters of the microstrip lines are varied 

and data is collected as input-target pair sets that are used 

during training, validation and testing of the ANNs. 

 

 
Fig. 5. S-parameters from circuit model simulation and 

Momentum EM simulation 

 

 
Fig. 6.Transient simulation setup of the meander line 

 

 
Fig. 7.Calculation of delay from the voltage waveform 

at port 1 (Vin) and port 2 (Vout) 
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V. NEURAL NETWORK TRAINING AND 

PERFORMANCE COMPUTATION 

MATLAB is used to build and train the neural networks. 

Early stopping is used to improve the generalization 

capability of the neural networks. The early stopping method 

requires users to separate their data into three groups, namely 

training, validation and testing data. In this work, the data 

collected are randomly split into training, validation and 

testing sets according to a specified split ratio. Training data 

is used to update the weights and biases of the neural model 

during the training process. Validation data is used to 

terminate the training process if the validation error increases 

continuously for several iterations. Testing data is used for an 

unbiased performance evaluation of the neural models. The 

collected data are arranged as follows: 

 

 1 2 3input ,x x x K  

 

(

3) 

 

 1 2 3target .t t t K  (

4) 

 

The universal approximation theorem [27-28] states that a 

feed-forward network with a single hidden layer containing a 

finite number of neurons can approximate any continuous 

functions to any degree of accuracy. Thus in this work, a 

three layered MLP which has only one hidden layer with a 

tansig activation function in the hidden layer and a linear 

output activation function is used. In addition, the 

Levenberg-Marquardt backpropagation algorithm [29] is 

used to train the neural network models. The 

Levenberg-Marquardt algorithm has a benefit of faster 

convergence. This advantage is especially noticeable if very 

accurate training is required. For example, results in [30] 

show that the Levenberg-Marquardt algorithm is able to 

obtain lower mean square errors than any of the other 

algorithms tested. 

The performances of the neural networks are rated by 

using the coefficient of determination, R2: 
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where mse(tN - yN) is mean squared error between 

normalized targets, tN and normalized outputs yN of the neural 

model, and var(tN,i) is the variance of the ith output neuron, 

tN,I defined as follows: 
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wherelength(.) is the length of the vector. The mean of 

targets, ,N it is defined as follows: 
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The training data is normalized to the range of [-1, 1] to 

improve training performance. 

VI. SIMULATION RESULTS 

This section discusses the results obtained from the ANN 

simulations. The results are analyzed in terms of the accuracy 

and the time it takes to train the neural network for a different 

number of hidden neurons and a different number of 

inputs/data points. The results involve two cases which are 

delay times versus segment length and delay times versus 

segment spacing. All simulations are done on a 2.6 GHz 3rd 

Gen. Intel Core i5 processor with 4 GB of RAM. 

A. Case 1: Delay Times Versus Segment Length 

For Case 1, 130 samples are simulated from ADS where 

100 of them are used to train and validate the neural models 

and the rest is used for unbiased performance evaluation. The 

segment length is varied from 2 mm to 11.9 mm. Hmax is 

calculated to be 19 during training. 10 models are trained for 

each number of hidden neurons which totals up to 190 

network models being created. 

 The best design has 12 hidden neurons, a validation 

performance of 0.9990 and a testing performance of 0.9995. 

The average training time of each neural model is only 

0.1358 second which is very short. Fig. 8 shows that the ANN 

predictions closely match the ADS simulation results. It can 

be observed that the increment of meander line segment 

length results in shorter propagation delay, even though the 

total length of the line remained the same. For longer segment 

length, the cross-coupling between adjacent segments is 

amplified, which provide another alternative path for the 

signal to bypass the full length of the line. Other than that, we 

also study the effect of training sample size on the 

performance of the neural model. We trained the neural 

model with training data of different sizes and then test it with 

30 testing samples. As can be seen from Fig. 9, the training 

process of the neural model converges at a training data size 

of 40. After that, increasing the training data size has little 

impact on the test performance of the neural model. 

 

 
Fig. 8.  Calculation of delay from the voltage 

waveform at port 1 (Vin) and port 2 (Vout) 
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Fig. 9. Testing performance versus training sample size 

for Case 1 

B.Case 2: Delay Times Versus Segment Spacing 

For Case 2, 190 new networks are created to model the 

meander lines. 100 samples are used for training and 

validation and an additional 30 samples are generated to 

evaluate the performances of the neural models. In this case, 

the segment spacing is varied from 0.05 mm to 5 mm.  

The best design has 11 hidden neurons, a validation 

performance of 0.9995 and a testing performance of 0.9990. 

The average training time of each neural model is 0.1991 

second. Fig. 10 shows a good agreement between ANN 

predictions and ADS simulation results. In this case, the 

delay time decreases with a reduction in the segment spacing. 

This is due to the coupling effect between the segments. As 

the spacing decreases, the coupling between adjacent lines 

increases. It is observed that when the segment spacing is 

between 5 mm to 2 mm the propagation delay reduces slowly. 

However, the propagation delay reduces significantly when 

segment spacing is below 2 mm. As in case 1, we trained the 

neural model with training data of different sizes and then test 

it with 30 testing samples. As can be seen from Fig. 11, the 

training process of the neural model converges at a training 

data size of 50. 

Finally, as a comparison of simulation time, the total time 

from generating the S-parameters using Momentum and 

using the generated S-parameters to determine the delay of 

the line in a transient simulation is about 95 s, while the time 

for the trained ANN to determine the delay for a given 

physical parameter was only 0.04 s. This gives over 2000× 

improvement in speed when using the proposed ANN 

modeling. 

 

 
Fig. 10.  Calculation of delay from the voltage 

waveform at port 1 (Vin) and port 2 (Vout) 

 
Fig. 11. Testing performance versus training sample 

size for Case 2 

VI. CONCLUSION 

In this work, artificial neural networks have been used to 

model the delay in meander lines. Due to the cross coupling 

between adjacent traces of the lines, the delay of the meander 

line structure is not easily predicted using normal delay 

equations. On the other hand, accurate electromagnetics 

solvers are slow and computationally expensive. Results 

obtained from the proposed method indicate that the neural 

models are able to provide accurate (above 99.5% accuracy) 

and fast (over 2000× speed-up) solutions compared to using 

conventional EM simulation tools, thus making it an 

attractive alternative to circuit designers. Future work will 

focus on modeling using higher order ANNs to include other 

design parameters of the lines.  
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