
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

510

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1079.0982S1119

Abstract--- Most of the current day applications are data and

compute intensive which led to invention of technologies like

Hadoop. Hadoop uses Map Reduce framework for parallel

processing of big data applications using the computing

resources of multiple nodes. Hadoop is designed for cluster

environments and has few limitations when executed in cloud

environments. Hadoop on cloud has become a common choice

due to its easy establishment of infrastructure and pay as you use

model. Hadoop performance on cloud infrastructures is affected

by the virtualization overhead of cloud environment. The

execution times of Hadoop on cloud can be improved if the

virtual resources are effectively used to schedule the tasks by

studying the resource usage characteristics of the tasks and

resource availability of the nodes. The proposed work is to build

a dynamic scheduler for Hadoop framework which can make

scheduling decision dynamically based on job resource usage

and node load. The results of the proposed work indicate an

improvement of up to 23% in execution time of the Hadoop Map

Reduce applications.

Keywords--- Hadoop, Map Reduce Scheduler, Capacity

Scheduler, Load Aware, Big Data.

I. INTRODUCTION

Technologies like Hadoop [1] enabled for large scale data

processing using Map Reduce parallel computing

framework Map Reduce. Map Reduce framework divides

the job into two phases of execution namely Map and

Reduce phase. The input data of the job is divided into

multiple chunks and each chunk gets copied to nodes in

accordance to specified replication factor. Hadoop

Distributed File System (HDFS) module of Hadoop

performs the distribution of input data to multiple nodes.

HDFS is the distributed file system that acts like data

management framework while Map Reduce is the

processing framework of Hadoop.

Map task runs the user specified Map function on the

chunk of input data copied to HDFS of the data node and

generates the intermediate key value pairs. Reduce task

processes these intermediate key value pairs with the user

specified Reduce function and generate the final output.

Hash function is used to partition the intermediate key value

pairs from Map tasks to Reduce tasks. Map Reduce has

become popularly used framework for parallel processing

due to its features like scalability, automatic parallelism,

fault tolerance mechanisms and simplicity.

Despite of its success in large scale data processing there

are few limitations in the current implementations of

Hadoop. Hadoop schedulers behave in a static way for

Manuscript received September 16, 2019.

Adepu Sree Lakshmi, Associate Professor, Geethanjali College of

Engineering & Technology, Hyderabad, India.(e-mail:

adepu.sreelakshmi@gmail.com)
Dr.N. Subhash Chandra, Professor, CVR College of Engineering.

Dr.M. Balraju, Professor, Swamy Vivekananda Institute of

Technology. T.N, India.

allocation of tasks to the data nodes. Hadoop provides First

in First out (FIFO), Fair and Capacity scheduler (CS) [5, 29]

in the package. FIFO schedules the jobs in the order of job

submission time and priorities.

Fair scheduler creates pools for multiple users and each

pool is assured fair share of resources and more jobs are

executed concurrently. Capacity Scheduler uses multiple

queues/pools in a hierarchical way where each pool is

guaranteed some fraction of physical resources in the

cluster. All the schedulers provided in Hadoop package are

static in nature where the scheduling decisions are not based

on the resource requirements of the job [25]. The description

of the schedulers available for Hadoop framework is

provided in the paper [6].

Though Hadoop has good performance in static cluster

environments, but when executed in virtual environments

like cloud its performance is affected by the virtual

machines(VMs) running on physical machine [3,30]. Cloud

has now become a popular choice for infrastructure due to

its flexible way of using the resources and pay as you use

strategy. Executing Hadoop jobs on public cloud has

become very common choice.

In cloud environment multiple virtual machines run on a

physical machine. The performance of one virtual machine

affects other virtual machines as the entire resource requests

go through the hypervisor. If the resource usage of a Map

task is studied then scheduling decision can be done based

on the job resource usage and node resource availability so

that tasks with dissimilar resource usages are scheduled on

VMs running on one physical machine.

To overcome the limitations of static way of scheduling

the tasks to data nodes running on virtual machines, a

dynamic load aware scheduler is proposed which can

dynamically schedule the Map/ Reduce tasks. When

Map/Reduce tasks are scheduled on virtual machines, the

resource usage behavior of jobs and resource availability of

virtual machines are considered in the decision of

scheduling of Map/ Reduce tasks of different jobs to achieve

an optimized execution time.

A virtual machine executing on a node that is IO heavy is

more suitable for a task which needs less amount of IO. The

scheduling of Map and Reduce tasks is done in

consideration with the resource characteristics of the virtual

machines and the resource usage behavior of Map/Reduce

task.

Virtual machine load characteristics include load on

virtual machine in term of its CPU usage and IO usage,

number of tasks currently running on the VM. The runtime

Dynamic Load Aware Scheduler of Map

Reduce Tasks for Cloud Environments
Adepu Sree Lakshmi, N. Subhash Chandra, M. Balraju 

DYNAMIC LOAD AWARE SCHEDULER OF MAP REDUCE TASKS FOR CLOUD ENVIRONMENTS

511

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1079.0982S1119

of a task scheduled on a virtual machine is affected by the

load on other virtual machines running on the same physical

machine, as all the IO communication and CPU

communication goes through the hypervisor, and these

overheads increase as the number of VMs per bare-hardware

node increases. Job characteristics include whether job is

CPU intensive or IO intensive? All jobs do not use the

resources in the similar way [4]. Few jobs like word count

needs lot of CPU processing than the IO data transfer where

as some other jobs like pi, grep needs lot of IO data transfer

than CPU processing.

If such behavior of job can be analyzed during the

execution of initial Map/Reduce tasks, that knowledge can

be used in scheduling the remaining Map/Reduce tasks of

the job to efficiently schedule the tasks based on the

resource availability of the node.

Job finishing time plays a crucial role in cloud computing

environments as the users should pay per use and most of

the cloud models follow hourly model for pricing. This

dynamic loadaware scheduler of Map Reduce tasks can

reduce the makespan of all big data applications submitted

by users to a cloud thereby reducing the rent to be paid for

cloud infrastructure.

Task scheduling was explored by many researchers and

different strategies were proposed. Optimized and efficient

way of scheduling were aimed with different goals like

scheduling based on interference [26], reducing partitioning

skew [24], cost effective way to create best cluster

configuration [28] profit oriented [31], prediction based and

locality aware task scheduling [22].

Comparison of different scheduling algorithms can be

found in [27]. Few works were proposed to design

schedulers which can schedule the Map Reduce tasks based

on different criteria related to resource usage. Dyscale [7], a

Map Reduce job scheduler for heterogeneous multicore

processers was designed by Feng Yan et al. Dyscale tries to

configure cores statically into categories like slow core and

fast core and uses the information in scheduling.

This work is based on the assumption that the slots are

fixed as Map slot and Reduce slot which is not suitable for

Hadoop MRv2. K. Arun Kumar et al. proposed context

aware scheduler (CASH) [8] where scheduling decisions are

done in consideration with job characteristics and node

characteristics. CASH classifies the nodes statically as

computational or IO good based on the performance of CPU

and IO.

The work was demonstrated on a simulation environment

and not on the realistic Map Reduce environment. They

neglected the IO bound shuffle phase where Map outputs

are moved to the Reducers. It is completely a static

approach of classifying the node which does not consider

the current load on the node.

Prism [9] is a fine grained resource aware scheduling for

Map Reduce. It performs resource aware scheduling at the

level of task phases. This work differentiates the resource

usage at different phases and accordingly allocates the

resources required at each fine grain.

This paper also did not consider the node load levels

during the resource estimation. Most other works [10, 11,

12, 13, 14] have configured the nodes based on the resource

availability but all these works categorized the nodes

statically as either the node as CPU good or IO good based

on the performance of the node. This work differs in the

way the nodes are classified dynamically based on the load

on the virtual machines whether the node is ready for IO

heavy or CPU heavy tasks based on the estimated load on

the node.

The proposed dynamic loadaware scheduler is built using

the following contributions

1. Task resource usage tag determination model using

the counters provided by the initial Map/ Reduce

tasks of the job.

2. Node load prediction model that predicts the future

CPU and IO load on the node using the Linear

Regression technique based on previous CPU and

IO utilizations of the node and determine the node

resource tag.

3. Dynamic load aware scheduling algorithm that

dynamically schedules the Map / Reduce tasks on

to the nodes based on the resource requirements

and node resource availability in terms of CPU and

IO intensiveness. The tasks which are observed to

be CPU intensive are prioritized to schedule on the

nodes which have less CPU utilization and

similarly for IO utilization parameter. This can

reduce the running time as the jobs with different

resource requirements are scheduled on the node.

Proposed dynamic load aware scheduler is implemented

using Hadoop 2.5.2 and the results indicate an improvement

of 23% in the makespan times of the jobs submitted to

Hadoop cluster.

This paper is organized as follows: Section 2 provides the

motivation behind our work, Section 3 discusses the details

of design and implementation of the proposed scheduler,

Section 4 gives the evaluation results of the proposed

scheduler compared with the capacity scheduler provided in

Hadoop, and finally the conclusion is given in Section 5.

II. HADOOP INTERNALS

The scheduling process in Hadoop MRv2 YARN is

performed by two components i) Resource Manager and ii)

Application Master.

Resource Manager allocates resources to the submitted

jobs with respect to the scheduler specified by the property

yarn.resourcemanager.scheduler.class in file yarn-site.xml.

Application Master is created for each job submitted and is

responsible for negotiating the required resources from

Resource Manager and assigns them for the Map / Reduce

tasks of the job.

The resource management in YARN is done using

Containers which represents a resource unit instead of slot

based resource management as done in MRv1.

Every data node has the Node Manager module which is

responsible for containers management, monitoring their

resource usage and communicates the same to the Resource

Manager through heartbeat messages.

The application workflow in Hadoop framework is given

as

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

512

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1079.0982S1119

Step 1: client submits an application to the Resource

Manager.

Step 2: Resource Manager allocates a container for

Application Master.

Step 3: Application Master registers with Resource

Manager.

Step 4: Application Master requests Resource Manager

for containers with resource specifications required to run

the tasks.

Step 5: Application Master requests node managers to

launch containers.

Step 6: Map task/Reduce task is executed in the

container.

Step 7: client can monitor application status by contacting

to Resource Manager/Application Master.

Step 8: Application Master unregisters itself from

Resource Manager once all tasks finish execution.

The Fig.1 indicates the detailed steps in the job execution

of Hadoop using Resource Manager and Application

Master. Once the Application master is started it assigns the

Map tasks to multiple node managers based on the response

received from Resource Manager. Node Managers create

containers to execute the assigned Map/Reduce task. Node

Manager communicates regularly with Resource Manager

using Heart Beat Mechanism.

Fig. 1: Hadoop Job Execution Steps

The proposed work is to construct a dynamic capacity

scheduler that can take scheduling decisions using job

resource usage characteristics and virtual machine resources

availability. All the Map tasks of a particular job apply same

Map function on its own data split.

The data chunk size for each Map task expect for the last

chunk is same. Hence once the task resource usage behavior

is understood after completion of few tasks, then that

knowledge is used in scheduling so that the remaining tasks

which are CPU heavy are not scheduled on the data node

that is less CPU free.

If a datanode is observed as executing tasks that are CPU

intensive then a task that is less CPU intensive is selected

for that node. The capacity scheduler of Hadoop framework

is being reframed with the proposed dynamic loadaware

algorithm. The makespan of all jobs submitted to Hadoop

cluster is reduced when the job resource usage

characteristics and the current load on the node are used in

scheduling decisions.

III. DYNAMIC LOAD AWARE SCHEDULER

FOR HADOOP

The design of the proposed scheduler includes the three

contributions as specified in section 1. First contribution is

to determine the job resource usage characteristics using the

statistics related to CPU and IO usage of the initial Map /

Reduce tasks. Secondly the node resource availability is

predicted based on the previous history of CPU and IO

utilizations of the node.

Finally the dynamic load aware scheduler is designed

which schedules the Map Reduce tasks based on job

resource usage and node resource availability. The initial

Map Reduce tasks enable to understand the resource usage

behavior of the job which can be used in scheduling the

remaining tasks of the job.

Determination of Job Tag

Map Reduce tasks are assigned with a tag indicating the

resource usage intensiveness in terms of CPU and IO. CPU

tag indicates CPU intensiveness and IO tag indicates IO

intensiveness of the job. Tag value is determined based on

the execution counters of initial Map tasks that finished the

execution. The counter values of CPU_MILLI_SECONDS,

GC_TIME of the task are used to determine CPU tag and

the counter values of HDFS_BYTES_READ,

HDFS_BYTES_WRITTEN, FILE_BYTES_READ,

FILE_BYTES_WRITTEN are used to determine the IO tag.

CPU utilization is calculated by taking the percentage of

CPU time using (CPU_MILLI_SECONDS +

GC_TIME)/elapsed time. If percentage of CPU utilization is

greater than 50% then the task is categorized as CPU heavy

otherwise as CPU light. IO utilization is determined by

calculating the IO throughput as

(HDFS_BYTES_READ+FILE_BYTES_WRITTEN+HDFS

_BYTES_WRITTEN+FILE_BYTES_READ) /elapsed

time, where the number of bytes is taken in MB. If

IOthroughput >5 then the job is considered to be IO heavy,

otherwise as IO light.

Job is associated with a tag once the initial Map tasks are

completed depending on their CPU utilization and IO

utilization as given in Table 1. The detailed implementations

for determination of job tag for Map/Reduce tasks resource

usage characteristics can be found in our previous paper

[15].

Table 1: CPU and IO Tag Description

Tag Tag value Interpretation

00 0 CPU light and IO light process

01 1 CPU light and IO heavy process

10 2 CPU heavy and IO light process

11 3 CPU heavy and IO heavy process

Determination of Node Tag

To design the proposed scheduler, prediction of node

resource usage status is done in terms of CPU usage and IO

usage. The node is associated with a tag depending on the

prediction of node load and is communicated to Resource

Manager through the heart beat message of Node Manager.

DYNAMIC LOAD AWARE SCHEDULER OF MAP REDUCE TASKS FOR CLOUD ENVIRONMENTS

513

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1079.0982S1119

Node load prediction in terms of CPU and IO is done

using linear regression [23, 16, 17, 18] where the current

CPU (or IO utilization) is the dependent variable and

previous time interval CPU (or IO utilization) is considered

as independent variable. The Linear model for the prediction

used is in the form of equation 1.

Ut= β0+ β1Ut-1 (1)

This model estimates the next CPU utilization of a virtual

machine by considering the previous CPU utilizations. If

Ut-1is CPU utilization at time t-1 and Ut is CPU utilization

at time, t then there is a linear relation between Ut and Ut-

1as given in Eq. (1) where least squares method is used to

determine the relationship between the CPU utilizations at

different time slots by determining the coefficients β0, β1 as

given in Eq. (2) & Eq. (3)

β0= (2)

β1= (3)

Similarly linear regression is applied for IO utilization

where Ut-1is IO utilization at time t-1 and Ut be IO

utilization at time, t using Eq. (1).

The near future CPU and IO utilization of a particular

node is determined using linear regression and is associated

with a tag of two bits where MSB denotes CPU utilization

and LSB denotes IO utilization.

If CPU utilization is greater than 50% then the node is

tagged as CPU heavy and if IO utilization is greater than

50% then the node is tagged as IO heavy. The tag specifies

the next CPU and IO utilization estimation based on

previous history using linear regression as indicated in the

Table 2.

Table 2: Node Tag Description

Node Tag Node Tag Value Description

00 0 CPU free IO free

01 1 CPU free IO busy

10 2 CPU busy IO free

11 3 CPU busy IO busy

Current CPU utilization and IO utilization of the node is

determined using the command iostat –x. iostat is the

command that reports the CPU and IO statistics. iostat with

–x option is used to display the extended statistics where the

columns %user, %nice, %system which indicates percentage

of CPU utilization that occurred by executing at the user

level, user level with nice priority and system level

respectively and %utilization indicates the IO utilization.

The required statistics are extracted using awk script

(stat.awk). `Iostat –x|awk –f stat.awk` is used to retrieve the

required CPU utilization and IO utilization with an interval

of 2 msec.

The values obtained are used for linear regression to

predict the future CPU and IO utilizations of the node. The

shell script that determine the near future CPU and IO

utilization of a particular node using linear regression is

being invoked in monitoring thread of Node Resurce

Monitor Impl class of Hadoop package.

The monitoring thread runs continuously and sets the

CPU tag and IO tag for the node.

Once the node status is determined, it is passed to

Resource Manager through the heartbeat message. To

enable the tag information to be embedded in heartbeat, the

NodeHeartbeatRequest class is being modified to include a

node heartbeat instance with CPU tag and ÏO tag.

To evaluate our proposed prediction model of the node

load prediction using linear regression another bash script is

written to monitor the real CPU and IO utilizations using

iostat and the awk script. The observed values are compared

with estimated values using Mean Absolute Error (MAE),

Root Mean Square Error (RMSE).

Workloads are being varied to have CPU intensive tasks

and IO intensive tasks and mixture of CPU and IO intensive

tasks. Hi-Bench [19] Hadoop benchmarking tool is used to

generate the workload for CPU intensiveness and IO

intensiveness jobs.

The Mean Absolute Error (MAE), Root Mean Square

Error (RMSE) are calculated for different sets of workloads

generated by Hi-Bench suite. For each workload samples of

100 is used and when merged on the common field of time

between estimated utilizations and real utilizations of CPU

and IO, lead to 90 to 95 samples.

Stressing tool [20] is used to stress the node in terms of

CPU and IO to check for evaluation of node prediction

model. Four test cases are used to evaluate the prediction

model.

Test Case1: No stress, Test Case2: Stress on CPU, Test

Case 3: Stress on IO and Test Case 4: Stress on CPU and

IO. Table 2 gives the error value calculations for CPU

utilization and IO utilization for these test cases.

Table 3: Linear Regression for CPU and IO Utilization

Prediction

Test

case

CPU utilization

prediction

IO utilization

prediction

MAE RMSE MAE RMSE

Test

case-1
0.087196 0.087933 0.001465 0.003689

Test

case-2
0.100976 0.100887 0.011254 0.037082

Test

case-3
0.120874 0.122632 0.109223 0.111756

Test

case4
0.185433 0.186654 0.190876 0.190437

The model is observed to be efficient in forecasting the

future CPU and IO utilizations based on MAE and RMSE

values.

Dynamic Load Aware Scheduler

The proposed work is to perform dynamic scheduling of

Map Reduce tasks using node tag and job tag as given in the

Algorithm1.

To implement the proposed work the following changes

were made in Hadoop package:

1. Inclusion of Boolean variable named loadaware in

yarn_server_common_service_protos.proto

2. All the modules modified in Hadoop package are

being written in consideration with the loadaware

variable to differentiate if the loadaware property is

set by the user.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

514

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1079.0982S1119

Algorithm 1 assignContainers(Resource clusterRes,

FicaSchedulerNode node)

alloc=false;

turn=1;

count=0;

size=activeApplications.size();

for(FicaSchedulerAppapp:activeApplications)

if(load-aware)

count++;

if node has data local for application app

selectedapp=app

n=nodetag of node;

j=jobtag of app;

if((j==0) or (j==-1))

 selectedapp=app

if(match=true) store turn into file

else

if(j AND n=0)

selectedapp=app

match=true

if(count<size) continue

else

if (turn=1)

turn=2

return

NULL_

ASSIGN

MENT

end if

end if

end if

end if

return selectedapp;

end for

A Dynamic scheduler algorithm as given in algorithm1 is

designed by contributing to Hadoop framework which can

schedule tasks based on node tags and job tags. For the

initial Map tasks, the job tags are unknown (job tag=-1) then

the scheduling is done by using Hadoop Capacity Scheduler.

But once the job tag is determined after completion of few

Map tasks, the job tag is used in scheduling decisions along

with the node tag. Node tag is determined by the monitoring

thread as given in section 2.2. The default Hadoop Capacity

scheduler is used if the current job tag is 0 as the job is

neither IO heavy nor CPU heavy. If the current job tag is not

equal to 0 then a search of job is done that matches the node

tag of the current node (AND operation of job tag and node

tag is used to select the job whose resource usage is not

same as the node resource usage heaviness). The selected

app based on the tags is scheduled on the node if found,

otherwise a NULL_ASSIGNMENT is returned. The number

of turns allowed for returning NULL_ASSIGNMENT is

only once. If a particular job A (turn=2) was skipped due to

mismatch of the job tag and node tag and no jobs in the

queue got scheduled, then job A gets scheduled.

Dynamic load aware scheduler checks for an appropriate

job based on the job tag and node tag. If job tag is found to

be 0, it is scheduled directly on the data node which is ready

for the next task. Otherwise the AND operation of job tag

and node tag can be used to get a job with dissimilar tags. If

a job is observed to be CPU heavy (2) then a node with node

tag 1 and 0 is more appropriate for the task.

IV. EVALUATION AND RESULTS

The proposed dynamic load aware scheduler for Hadoop

is evaluated on private and public cloud environments.

Dynamic Load Aware Scheduler Evaluation on Private

Cloud

The proposed scheduler is evaluated on private cloud

setup using VMware tools: VMware ESXi server and

VCenter. Four VMs are created with the following

configurations OS: Ubuntu14.0, Memory: 4GBHard Disk:

200GB. Jobs WordCount(WC), Pi,

RandomTextWriter(RTW), Sort, grep are used for

evaluation of proposed work and to have accurate results

each test case is executed for two times and the average

execution time is considered. Capacity scheduler is

configured with two queues of capacity configuration 50%

each. Fig.2 to Fig.5 gives comparison of Capacity scheduler

and proposed dynamic Capacity Scheduler Load Aware

(CSLA) for data sizes 1GB, 2 GB and 3 GB respectively.

Fig. 2: CS Vs CSLA on Private Cloud for Data

Size=1GB

Fig. 3: CS Vs CSLA on Private Cloud for Data

Size=2GB

Fig. 4: CS Vs CSLA on Private Cloud for Data

Size=3GB

DYNAMIC LOAD AWARE SCHEDULER OF MAP REDUCE TASKS FOR CLOUD ENVIRONMENTS

515

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1079.0982S1119

Fig. 5: CS vs. CSLA on Private Cloud for Data

Size=4GB

The above results in Fig.2 to Fig.5 indicate a good

performance improvement from 12% to 23% using Capacity

scheduler load aware for jobs of size 1GB, 2GB, 3GB, 4GB

when executed on private cloud of 4 machines except for the

jobs which have similar resource usage intensiveness like

RTW and sort when executed simultaneously. The Proposed

model is also tested using test cases with combination of 4

jobs with two queues of 50% capacity each on four virtual

machines. The set of four jobs with input data size of 3GB

are submitted with two jobs to each queue. The makespan

time for different combinations of jobs using Capacity

scheduler and capacity scheduler load aware for four jobs

with data size of 3GB on private cloud is indicated in Fig.6.

Fig. 6: CS vs CSLA for Four Jobs with Data Size=3G

The above results in Fig.6. indicate a good performance

improvement of up to 23% using capacity scheduler

loadaware for jobs of size 3GB when executed on private

cloud of 4 machines except for the jobs which have similar

resource usage patterns like Pi, WC, Sort, grep when

executed simultaneously.

Dynamic Load Aware Scheduler Evaluation on Public

Cloud

The proposed scheduler is evaluated on public cloud

Hadoop cluster created on Amazon EC2 machines with

basic OS as Ubuntu14.0 instances of type T2.medium by

varying the number of instances for data nodes. Jobs RTW,

WC, Pi, Sort, grep are used for evaluation. To get accurate

results each pair of jobs is executed for two times and the

average of execution time is used. Fig.7 to Fig.10 indicates

the makespan for capacity scheduler and capacity scheduler

load aware scheduler for test cases of data sizes of 1GB,

2GB, 3GB and 4GB.

Fig. 7: CS vs. CSLA on Public Cloud for Data Size=1GB

Fig. 8: CS vs. CSLA on Public Cloud for Data Size=2GB

Fig. 9: CS vs. CSLA on Public Cloud for Data Size=3GB

Fig. 10: CS vs. CSLA on Public Cloud for Data

Size=4GB

The above results in Fig.7 to Fig.10 indicate a good

performance improvement of up to 24% for jobs of size

1GB, 2GB, 3GB when executed on public cloud of 4

machines except for the jobs with similar resource usage

intensiveness. Proposed model is also tested for combination

of 4 jobs. The set of four jobs with input data size of 3GB

are submitted with two jobs to each queue of capacity 50

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

516

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1079.0982S1119

and Fig.11 provides the comparison of makespan time for

Capacity scheduler and capacity scheduler load aware on

public cloud Amazon EC2.

200

250

300

350

400

450

500

C
S

C
SL

A C
S

C
SL

A C
S

C
SL

A

n=4 n=5 n=6

M
ak

e
 s

p
an

 t
im

e

Number of virtual machines

RTW & WC, sort, Pi
RTW, sort, grep, WC
Sort, Pi, WC, grep

Fig. 11: CS vs. CSLA on Public Cloud for Four Jobs

with Data Size 3G

The above results in Fig.11 indicate a good performance

improvement using capacity scheduler load aware up to

20% for jobs of size 3GB when executed on public cloud of

4 machines except for the jobs with very similar resource

usage intensiveness.

V. CONCLUSION

A dynamic load aware scheduler for Hadoop framework

which can schedule the Map Reduce tasks based on resource

requirements of the task and resource availability of the

node is designed and implemented. The results indicate an

improvement of up to 24% in execution time when

scheduling is done using proposed dynamic load aware

scheduler compared to default capacity scheduler of

Hadoop.

The improvement in execution times increases as the

number of machines used to execute the Hadoop jobs

increases. The proposed dynamic load aware scheduler is

more efficient for Hadoop clusters with more number of

data nodes. This work can be further extended to have

automatic Hadoop configuration parameter settings based on

job resource usage characteristics to achieve optimized

performance.

REFERENCES

1. Hadoop The definitive guide, O’Reilly & yahoo press,

Tom White

2. J. Dean and S. Ghemawat, "MapReduce: Simplified Data

Processing on Large Clusters," Communications of the

ACM - 50th anniversary issue: 1958-2008, vol. 51, no. 1,

January 2008, pp.107-113.

3. K. Chen, J. Powers, S. Guo and F. Tian “CRESP:

Towards Optimal Resource Provisioning for MapReduce

Computing in Public Clouds”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 25, Issue: 6,

2014, pp. 1403 – 1412.

4. Lei Yang, Yu Dai, Bin Zhang, “Map Reduce scheduler

by characterizing performance interference”, China

Communications, Volume 13, Issue 10, November 2016,

pp. 253-262.

5. Open source Apache Hadoop,

http://Hadoop.apache.org/core/

6. A.Sree Lakshmi, Dr. M. Balraju, Dr.N.Subash Chandra,

“Scheduling of Parallel applications using Map Reduce

on Cloud: a Literature Survey" ”, International Journal

of Computer Science and Information Technologies,

Volume 6, Issue 1 , 2015, pp. 112-115.

7. Feng Yan, Ludmila Cherkasova, Zhuoyao Zhang,

Evgenia Smirni, “Dyscale: A Map Reduce job scheduler

for heterogeneous multicore processors” , IEEE

Transactions on Cloud Computing, Vol. 5, issue 2, June

2017, pp. 317-330.

8. K.Arun Kumar, Vamshi Krishna, Kaladhar Voruganti, G.

V. Prabhakara Rao, “CASH: context aware scheduler for

Hadoop”, ICACCI '12 Proceedings of the International

Conference on Advances in Computing, Communications

and Informatics, August 2012, pp.52-61.

9. Qi Zhang, Mohamed Faten Zhani, Yuke Yang, Raouf

Boutaba, Bernard Wong “Prism, Fine grained resource-

aware scheduling for MapReduce”, IEEE Transactions

on Cloud Computing, volume 3, issue 2, June 2015, pp.

182-191.

10. K. Chen, J. Powers, S. Guo and F. Tian “CRESP:

Towards Optimal Resource Provisioning for MapReduce

Computing in Public Clouds”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 25, Issue: 6,

2014, pp. 1403 – 1412.

11. Yi Yao,Jiayin Wang, Bo Sheng, Jason Lin, NingfangMi ,

“HaSTE: Hadoop YARN Scheduling Based on Task-

Dependency and Resource-Demand”, 7th IEEE

International Conference on Cloud Computing, July

2014, pp.184-191.

12. Radheshyam Nanduri, Nitesh Maheshwari, Reddy Raja,

Vasudeva Varma, “Job Aware scheduling algorithm for

Map Reduce Framework”, 3rd IEEE international

conference on Cloud Computing Technology and

science, Nov 2011, pp. 724-729.

13. Quan Chen, Daqiang Zhang, MinyiGuo, Qianni Deng,

and Song Guo. “Samr: A self-adaptive MapReduce

scheduling algorithm in heterogeneous environment.”

Computer and Information Technology, International

Conference, July 2010, pp. 2736– 2743.

14. Shyam Deshmukh, Dr. J. V. Aghav, Rohan Chakravarthy

“Job Classification for MapReduce Scheduler in

Heterogeneous Environment”, International Conference

on Cloud & Ubiquitous Computing & Emerging

Technologies, November 2013, pp.26-29.

15. A.Sree Lakshmi, Dr. M. Balraju, Dr.N.Subash Chandra,

“Determination of resource usage characteristics for

Hadoop Map Reduce tasks”, International Journal of

Computer Engineering & Technology (IJCET), Volume

9, Issue 1, January-February 2018, pp. 113–119.

16. FahimehFarahnakian, PasiLiljeberg, JuhaPlosila,

“LiRCUP: Linear Regression Based CPU Usage

Prediction Algorithm for Live Migration of Virtual

Machines in Data Centers”, 39th Euromicro Conference

on Software Engineering and Advanced Applications,

September 2013, pp. 357 – 364.

17. Jina Wang, Yongming Yan, Jun Guo, “Research on the

Prediction Model of CPU Utilization Based on ARIMA-

BP Neural Network”, MATEC Web of

Conferences, Volume 65, January2016.

18. Peter A. Dinda and David R. O’Hallaron, “Host load

prediction using linear models”, Cluster Computing 3,

Baltzer Science Publishers BV, Dec 2000, Volume 3,

Issue 4, pp. 265–280.

19. https://github.com/intel-Hadoop/HiBench

20. http://kernel.ubuntu.com/~cking/stress-ng/

21. Mohd Usama, Mengchen Liu, Min Chen, “Job

schedulers for Big data processing in Hadoop

environment: testing real-life schedulers using

benchmark programs”, Digital Communications and

DYNAMIC LOAD AWARE SCHEDULER OF MAP REDUCE TASKS FOR CLOUD ENVIRONMENTS

517

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B10790982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1079.0982S1119

 Networks, August 2017.

22. Hui Zhao, Qinghua Zheng, Weizhan Zhang and Jing

Wang, “Prediction-Based and Locality-Aware Task

Scheduling for Parallelizing Video Transcoding over

Heterogeneous MapReduce Cluster”, IEEE transactions

on circuits and systems for video technology, Vol. 28,

No. 4, April 2018.

23. Marina Kudinova1, Anna Melekhova, Alexander

Verinov, “CPU Utilization Prediction Methods

Overview”, CEE-SECR '15, October 22-24, 2015,

Moscow, Russian Federation, ACM.

24. Zhihong Liu, , Qi Zhang, , Reaz Ahmed, Member, IEEE

Raouf Boutaba, Fellow, IEEE, Yaping Liu, and Zhenghu

Gong Dynamic Resource Allocation for MapReduce

with Partitioning Skew, IEEE transactions on computers,

Vol. 65, No. 11, November 2016.

25. Shaowei Liu, Kaijum Ren, Kefeng Deng and Junqiang

Song , “A Dynamic resource allocation and task

scheduling strategy with uncertain task runtime on IaaS

clouds” , Sixth international conference on Information

Science and Technology, China, May 6-8 2016.

26. Lei Yang, Yu Dai, Bin Zhang, “Map Reduce Scheduler

by Characterizing Performance interference”, China

Communications, Oct 2016.

27. NIDHI TIWARI, SANTONU SARKAR, UMESH

BELLUR, MARIA INDRAWAN, “Classification

Framework of MapReduce Scheduling Algorithms”

ACM Comput. Surv. 47, 3, Article 49, April 2015.

28. Balaji Palanisamy, Aameek Singh, and Ling Liu, “Cost-

Effective Resource Provisioning for MapReduce in a

Cloud”, IEEE transactions on parallel and distributed

systems, Vol. 26, No. 5, May 2015.

29. Jian Li, Tinghuai Ma, Meili Tang, Wenhai Shen and

Yuanfeng Jin, “Improved FIFO Scheduling Algorithm

Based on Fuzzy Clustering in Cloud Computing”, MDPI-

Information, Feb 2017.

30. Qutaibah Althebyan1,Yaser Jararweh2, Qussai Yaseen3,

Omar AlQudah2 and Mahmoud Al-Ayyoub ,”

Evaluating Map Reduce tasks scheduling algorithms over

cloud computing infrastructure”, Concurrency and

Computation: Practice and Experience 2015, Published

online in Wiley Online Library.

31. Xu-qing Chai1, Yong-liang Dong and Jun-fei Li, “Profit-

oriented task scheduling algorithm in Hadoop cluster”,

EURASIP Journal on Embedded Systems, a Springer

open Journal.

