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Abstract--- Most of the current day applications are data and 

compute intensive which led to invention of technologies like 

Hadoop. Hadoop uses Map Reduce framework for parallel 

processing of big data applications using the computing 

resources of multiple nodes. Hadoop is designed for cluster 

environments and has few limitations when executed in cloud 

environments. Hadoop on cloud has become a common choice 

due to its easy establishment of infrastructure and pay as you use 

model. Hadoop performance on cloud infrastructures is affected 

by the virtualization overhead of cloud environment. The 

execution times of Hadoop on cloud can be improved if the 

virtual resources are effectively used to schedule the tasks by 

studying the resource usage characteristics of the tasks and 

resource availability of the nodes. The proposed work is to build 

a dynamic scheduler for Hadoop framework which can make 

scheduling decision dynamically based on job resource usage 

and node load. The results of the proposed work indicate an 

improvement of up to 23% in execution time of the Hadoop Map 

Reduce applications. 

Keywords--- Hadoop, Map Reduce Scheduler, Capacity 

Scheduler, Load Aware, Big Data. 

I. INTRODUCTION 

Technologies like Hadoop [1] enabled for large scale data 

processing using Map Reduce parallel computing 

framework Map Reduce. Map Reduce framework divides 

the job into two phases of execution namely Map and 

Reduce phase. The input data of the job is divided into 

multiple chunks and each chunk gets copied to nodes in 

accordance to specified replication factor. Hadoop 

Distributed File System (HDFS) module of Hadoop 

performs the distribution of input data to multiple nodes. 

HDFS is the distributed file system that acts like data 

management framework while Map Reduce is the 

processing framework of Hadoop. 

Map task runs the user specified Map function on the 

chunk of input data copied to HDFS of the data node and 

generates the intermediate key value pairs. Reduce task 

processes these intermediate key value pairs with the user 

specified Reduce function and generate the final output. 

Hash function is used to partition the intermediate key value 

pairs from Map tasks to Reduce tasks. Map Reduce has 

become popularly used framework for parallel processing 

due to its features like scalability, automatic parallelism, 

fault tolerance mechanisms and simplicity. 

Despite of its success in large scale data processing there 

are few limitations in the current implementations of 

Hadoop. Hadoop schedulers behave in a static way for 
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allocation of tasks to the data nodes. Hadoop provides First 

in First out (FIFO), Fair and Capacity scheduler (CS) [5, 29] 

in the package. FIFO schedules the jobs in the order of job 

submission time and priorities. 

Fair scheduler creates pools for multiple users and each 

pool is assured fair share of resources and more jobs are 

executed concurrently. Capacity Scheduler uses multiple 

queues/pools in a hierarchical way where each pool is 

guaranteed some fraction of physical resources in the 

cluster. All the schedulers provided in Hadoop package are 

static in nature where the scheduling decisions are not based 

on the resource requirements of the job [25]. The description 

of the schedulers available for Hadoop framework is 

provided in the paper [6]. 

Though Hadoop has good performance in static cluster 

environments, but when executed in virtual environments 

like cloud its performance is affected by the virtual 

machines(VMs) running on physical machine [3,30].  Cloud 

has now become a popular choice for infrastructure due to 

its flexible way of using the resources and pay as you use 

strategy. Executing Hadoop jobs on public cloud has 

become very common choice. 

In cloud environment multiple virtual machines run on a 

physical machine. The performance of one virtual machine 

affects other virtual machines as the entire resource requests 

go through the hypervisor. If the resource usage of a Map 

task is studied then scheduling decision can be done based 

on the job resource usage and node resource availability so 

that tasks with dissimilar resource usages are scheduled on 

VMs running on one physical machine. 

To overcome the limitations of static way of scheduling 

the tasks to data nodes running on virtual machines, a 

dynamic load aware scheduler is proposed which can 

dynamically schedule the Map/ Reduce tasks. When 

Map/Reduce tasks are scheduled on virtual machines, the 

resource usage behavior of jobs and resource availability of 

virtual machines are considered in the decision of 

scheduling of Map/ Reduce tasks of different jobs to achieve 

an optimized execution time. 

A virtual machine executing on a node that is IO heavy is 

more suitable for a task which needs less amount of IO. The 

scheduling of Map and Reduce tasks is done in 

consideration with the resource characteristics of the virtual 

machines and the resource usage behavior of Map/Reduce 

task. 

Virtual machine load characteristics include load on 

virtual machine in term of its CPU usage and IO usage, 

number of tasks currently running on the VM. The runtime  
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of a task scheduled on a virtual machine is affected by the 

load on other virtual machines running on the same physical 

machine, as all the IO communication and CPU 

communication goes through the hypervisor, and these 

overheads increase as the number of VMs per bare-hardware 

node increases. Job characteristics include whether job is 

CPU intensive or IO intensive? All jobs do not use the 

resources in the similar way [4]. Few jobs like word count 

needs lot of CPU processing than the IO data transfer where 

as some other jobs like pi, grep needs lot of IO data transfer 

than CPU processing. 

If such behavior of job can be analyzed during the 

execution of initial Map/Reduce tasks, that knowledge can 

be used in scheduling the remaining Map/Reduce tasks of 

the job to efficiently schedule the tasks based on the 

resource availability of the node. 

Job finishing time plays a crucial role in cloud computing 

environments as the users should pay per use and most of 

the cloud models follow hourly model for pricing. This 

dynamic loadaware scheduler of Map Reduce tasks can 

reduce the makespan of all big data applications submitted 

by users to a cloud thereby reducing the rent to be paid for 

cloud infrastructure.  

Task scheduling was explored by many researchers and 

different strategies were proposed. Optimized and efficient 

way of scheduling were aimed with different goals like 

scheduling based on interference [26], reducing partitioning 

skew [24], cost effective way to create best cluster 

configuration [28] profit oriented [31], prediction based and 

locality aware task scheduling [22]. 

Comparison of different scheduling algorithms can be 

found in [27]. Few works were proposed to design 

schedulers which can schedule the Map Reduce tasks based 

on different criteria related to resource usage. Dyscale [7], a 

Map Reduce job scheduler for heterogeneous multicore 

processers was designed by Feng Yan et al.  Dyscale tries to 

configure cores statically into categories like slow core and 

fast core and uses the information in scheduling. 

This work is based on the assumption that the slots are 

fixed as Map slot and Reduce slot which is not suitable for 

Hadoop MRv2. K. Arun Kumar et al. proposed context 

aware scheduler (CASH) [8] where scheduling decisions are 

done in consideration with job characteristics and node 

characteristics. CASH classifies the nodes statically as 

computational or IO good based on the performance of CPU 

and IO. 

The work was demonstrated on a simulation environment 

and not on the realistic Map Reduce environment. They 

neglected the IO bound shuffle phase where Map outputs 

are moved to the Reducers. It is completely a static 

approach of classifying the node which does not consider 

the current load on the node. 

Prism [9] is a fine grained resource aware scheduling for 

Map Reduce. It performs resource aware scheduling at the 

level of task phases. This work differentiates the resource 

usage at different phases and accordingly allocates the 

resources required at each fine grain. 

This paper also did not consider the node load levels 

during the resource estimation. Most other works [10, 11, 

12, 13, 14] have configured the nodes based on the resource 

availability but all these works categorized the nodes 

statically as either the node as CPU good or IO good based 

on the performance of the node. This work differs in the 

way the nodes are classified dynamically based on the load 

on the virtual machines whether the node is ready for IO 

heavy or CPU heavy tasks based on the estimated load on 

the node.  

The proposed dynamic loadaware scheduler is built using 

the following contributions 

1. Task resource usage tag determination model using 

the counters provided by the initial Map/ Reduce 

tasks of the job. 

2. Node load prediction model that predicts the future 

CPU and IO load on the node using the Linear 

Regression technique based on previous CPU and 

IO utilizations of the node and determine the node 

resource tag. 

3. Dynamic load aware scheduling algorithm that 

dynamically schedules the Map / Reduce tasks on 

to the nodes based on the resource requirements 

and node resource availability in terms of CPU and 

IO intensiveness. The tasks which are observed to 

be CPU intensive are prioritized to schedule on the 

nodes which have less CPU utilization and 

similarly for IO utilization parameter. This can 

reduce the running time as the jobs with different 

resource requirements are scheduled on the node. 

Proposed dynamic load aware scheduler is implemented 

using Hadoop 2.5.2 and the results indicate an improvement 

of 23% in the makespan times of the jobs submitted to 

Hadoop cluster. 

This paper is organized as follows: Section 2 provides the 

motivation behind our work, Section 3 discusses the details 

of design and implementation of the proposed scheduler, 

Section 4 gives the evaluation results of the proposed 

scheduler compared with the capacity scheduler provided in 

Hadoop, and finally the conclusion is given in Section 5. 

II. HADOOP INTERNALS 

The scheduling process in Hadoop MRv2 YARN is 

performed by two components i) Resource Manager and ii) 

Application Master. 

Resource Manager allocates resources to the submitted 

jobs with respect to the scheduler specified by the property 

yarn.resourcemanager.scheduler.class in file yarn-site.xml. 

Application Master is created for each job submitted and is 

responsible for negotiating the required resources from 

Resource Manager and assigns them for the Map / Reduce 

tasks of the job. 

The resource management in YARN is done using 

Containers which represents a resource unit instead of slot 

based resource management as done in MRv1. 

Every data node has the Node Manager module which is 

responsible for containers management, monitoring their 

resource usage and communicates the same to the Resource 

Manager through heartbeat messages. 

The application workflow in Hadoop framework is given 

as  
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Step 1: client submits an application to the Resource 

Manager. 

Step 2: Resource Manager allocates a container for 

Application Master. 

Step 3: Application Master registers with Resource 

Manager. 

Step 4: Application Master requests Resource Manager 

for containers with resource specifications required to run 

the tasks. 

Step 5: Application Master requests node managers to 

launch containers. 

Step 6: Map task/Reduce task is executed in the 

container. 

Step 7: client can monitor application status by contacting 

to Resource Manager/Application Master. 

Step 8: Application Master unregisters itself from 

Resource Manager once all tasks finish execution. 

The Fig.1 indicates the detailed steps in the job execution 

of Hadoop using Resource Manager and Application 

Master. Once the Application master is started it assigns the 

Map tasks to multiple node managers based on the response 

received from Resource Manager. Node Managers create 

containers to execute the assigned Map/Reduce task. Node 

Manager communicates regularly with Resource Manager 

using Heart Beat Mechanism. 

 
Fig. 1: Hadoop Job Execution Steps 

The proposed work is to construct a dynamic capacity 

scheduler that can take scheduling decisions using job 

resource usage characteristics and virtual machine resources 

availability. All the Map tasks of a particular job apply same 

Map function on its own data split. 

The data chunk size for each Map task expect for the last 

chunk is same. Hence once the task resource usage behavior 

is understood after completion of few tasks, then that 

knowledge is used in scheduling so that the remaining tasks 

which are CPU heavy are not scheduled on the data node 

that is less CPU free. 

If a datanode is observed as executing tasks that are CPU 

intensive then a task that is less CPU intensive is selected 

for that node. The capacity scheduler of Hadoop framework 

is being reframed with the proposed dynamic loadaware 

algorithm. The makespan of all jobs submitted to Hadoop 

cluster is reduced when the job resource usage 

characteristics and the current load on the node are used in 

scheduling decisions. 

III. DYNAMIC LOAD AWARE SCHEDULER 

FOR HADOOP 

The design of the proposed scheduler includes the three 

contributions as specified in section 1. First contribution is 

to determine the job resource usage characteristics using the 

statistics related to CPU and IO usage of the initial Map / 

Reduce tasks. Secondly the node resource availability is 

predicted based on the previous history of CPU and IO 

utilizations of the node. 

Finally the dynamic load aware scheduler is designed 

which schedules the Map Reduce tasks based on job 

resource usage and node resource availability. The initial 

Map Reduce tasks enable to understand the resource usage 

behavior of the job which can be used in scheduling the 

remaining tasks of the job. 

Determination of Job Tag 

Map Reduce tasks are assigned with a tag indicating the 

resource usage intensiveness in terms of CPU and IO. CPU 

tag indicates CPU intensiveness and IO tag indicates IO 

intensiveness of the job. Tag value is determined based on 

the execution counters of initial Map tasks that finished the 

execution. The counter values of CPU_MILLI_SECONDS, 

GC_TIME of the task are used to determine CPU tag and 

the counter values of HDFS_BYTES_READ, 

HDFS_BYTES_WRITTEN, FILE_BYTES_READ, 

FILE_BYTES_WRITTEN are used to determine the IO tag. 

CPU utilization is calculated by taking the percentage of 

CPU time using (CPU_MILLI_SECONDS + 

GC_TIME)/elapsed time. If percentage of CPU utilization is 

greater than 50% then the task is categorized as CPU heavy 

otherwise as CPU light. IO utilization is determined by 

calculating the IO throughput as 

(HDFS_BYTES_READ+FILE_BYTES_WRITTEN+HDFS

_BYTES_WRITTEN+FILE_BYTES_READ) /elapsed 

time, where the number of bytes is taken in MB. If 

IOthroughput >5 then the job is considered to be IO heavy, 

otherwise as IO light. 

Job is associated with a tag once the initial Map tasks are 

completed depending on their CPU utilization and IO 

utilization as given in Table 1. The detailed implementations 

for determination of job tag for Map/Reduce tasks resource 

usage characteristics can be found in our previous paper 

[15]. 

Table 1: CPU and IO Tag Description 

Tag Tag  value Interpretation 

00 0 CPU light and IO light process 

01 1 CPU light and IO heavy process 

10 2 CPU heavy and IO light process 

11 3 CPU heavy and IO heavy process 

Determination of Node Tag  

To design the proposed scheduler, prediction of node 

resource usage status is done in terms of CPU usage and IO 

usage. The node is associated with a tag depending on the 

prediction of node load and is communicated to Resource 

Manager through the heart beat message of Node Manager.   
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Node load prediction in terms of CPU and IO is done 

using linear regression [23, 16, 17, 18] where the current 

CPU (or IO utilization) is the dependent variable and 

previous time interval CPU (or IO utilization) is considered 

as independent variable. The Linear model for the prediction 

used is in the form of equation 1. 

Ut= β0+ β1Ut-1                                                       (1) 

This model estimates the next CPU utilization of a virtual 

machine by considering the previous CPU utilizations. If 

Ut-1is CPU utilization at time t-1 and Ut is CPU utilization 

at time, t then there is a linear relation between Ut and Ut-

1as given in Eq. (1) where least squares method is used to 

determine the relationship between the CPU utilizations at 

different time slots by determining the coefficients β0, β1 as 

given in Eq. (2) & Eq. (3)  

β0=        (2) 

β1=                    (3) 

Similarly linear regression is applied for IO utilization 

where Ut-1is IO utilization at time t-1 and Ut be IO 

utilization at time, t using Eq. (1). 

The near future CPU and IO utilization of a particular 

node is determined using linear regression and is associated 

with a tag of two bits where MSB denotes CPU utilization 

and LSB denotes IO utilization. 

If CPU utilization is greater than 50% then the node is 

tagged as CPU heavy and if IO utilization is greater than 

50% then the node is tagged as IO heavy. The tag specifies 

the next CPU and IO utilization estimation based on 

previous history using linear regression as indicated in the 

Table 2. 

Table 2: Node Tag Description 

Node Tag Node Tag Value Description 

00 0 CPU free IO free 

01 1 CPU free IO busy 

10 2 CPU busy IO free 

11 3 CPU busy IO busy 

Current CPU utilization and IO utilization of the node is 

determined using the command iostat –x. iostat is the 

command that reports the CPU and IO statistics. iostat with 

–x option is used to display the extended statistics where the 

columns %user, %nice, %system which indicates percentage 

of CPU utilization that occurred by executing at the user 

level, user level with nice priority and system level 

respectively and %utilization indicates the IO utilization.  

The required statistics are extracted using awk script 

(stat.awk). `Iostat –x|awk –f stat.awk` is used to retrieve the 

required CPU utilization and IO utilization with an interval 

of 2 msec. 

The values obtained are used for linear regression to 

predict the future CPU and IO utilizations of the node. The 

shell script that determine the near future CPU and IO 

utilization of a particular node using linear regression is 

being invoked in monitoring thread of Node Resurce 

Monitor Impl class of Hadoop package. 

The monitoring thread runs continuously and sets the 

CPU tag and IO tag for the node.  

Once the node status is determined, it is passed to 

Resource Manager through the heartbeat message. To 

enable the tag information to be embedded in heartbeat, the 

NodeHeartbeatRequest class is being modified to include a 

node heartbeat instance with CPU tag and ÏO tag.  

To evaluate our proposed prediction model of the node 

load prediction using linear regression another bash script is 

written to monitor the real CPU and IO utilizations using 

iostat and the awk script. The observed values are compared 

with estimated values using Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE).  

Workloads are being varied to have CPU intensive tasks 

and IO intensive tasks and mixture of CPU and IO intensive 

tasks. Hi-Bench [19] Hadoop benchmarking tool is used to 

generate the workload for CPU intensiveness and IO 

intensiveness jobs. 

The Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE) are calculated for different sets of workloads 

generated by Hi-Bench suite. For each workload samples of 

100 is used and when merged on the common field of time 

between estimated utilizations and real utilizations of CPU 

and IO, lead to 90 to 95 samples.  

Stressing tool [20] is used to stress the node in terms of 

CPU and IO to check for evaluation of node prediction 

model. Four test cases are used to evaluate the prediction 

model. 

Test Case1: No stress, Test Case2: Stress on CPU, Test 

Case 3: Stress on IO and Test Case 4: Stress on CPU and 

IO. Table 2 gives the error value calculations for CPU 

utilization and IO utilization for these test cases. 

Table 3: Linear Regression for CPU and IO Utilization 

Prediction 

Test 

case 

CPU utilization 

prediction 

IO utilization 

prediction 

MAE RMSE MAE RMSE 

Test 

case-1 
0.087196 0.087933 0.001465 0.003689 

Test 

case-2 
0.100976 0.100887 0.011254 0.037082 

Test 

case-3 
0.120874 0.122632 0.109223 0.111756 

Test 

case4 
0.185433 0.186654 0.190876 0.190437 

The model is observed to be efficient in forecasting the 

future CPU and IO utilizations based on MAE and RMSE 

values. 

Dynamic Load Aware Scheduler 

The proposed work is to perform dynamic scheduling of 

Map Reduce tasks using node tag and job tag as given in the 

Algorithm1. 

To implement the proposed work the following changes 

were made in Hadoop package: 

1. Inclusion of Boolean variable named loadaware in 

yarn_server_common_service_protos.proto 

2. All the modules modified in Hadoop package are 

being written in consideration with the loadaware 

variable to differentiate if the loadaware property is 

set by the user. 
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Algorithm 1 assignContainers(Resource clusterRes, 

FicaSchedulerNode node) 

alloc=false; 

turn=1; 

count=0; 

size=activeApplications.size(); 

for(FicaSchedulerAppapp:activeApplications) 

if(load-aware) 

count++; 

if node has data local for application app 

selectedapp=app 

n=nodetag of node; 

j=jobtag of app; 

if((j==0) or (j==-1)) 

 selectedapp=app  

if(match=true) store turn into file 

else 

if(j AND n=0) 

selectedapp=app 

match=true 

if(count<size) continue 

else 

if (turn=1)  

turn=2 

return 

NULL_

ASSIGN

MENT 

end if 

end if 

end if 

end if 

return selectedapp; 

end for 

A Dynamic scheduler algorithm as given in algorithm1 is 

designed by contributing to Hadoop framework which can 

schedule tasks based on node tags and job tags. For the 

initial Map tasks, the job tags are unknown (job tag=-1) then 

the scheduling is done by using Hadoop Capacity Scheduler. 

But once the job tag is determined after completion of few 

Map tasks, the job tag is used in scheduling decisions along 

with the node tag. Node tag is determined by the monitoring 

thread as given in section 2.2. The default Hadoop Capacity 

scheduler is used if the current job tag is 0 as the job is 

neither IO heavy nor CPU heavy. If the current job tag is not 

equal to 0 then a search of job is done that matches the node 

tag of the current node (AND operation of job tag and node 

tag is used to select the job whose resource usage is not 

same as the node resource usage heaviness). The selected 

app based on the tags is scheduled on the node if found, 

otherwise a NULL_ASSIGNMENT is returned. The number 

of turns allowed for returning NULL_ASSIGNMENT is 

only once. If a particular job A (turn=2) was skipped due to 

mismatch of the job tag and node tag and no jobs in the 

queue got scheduled, then job A gets scheduled. 

Dynamic load aware scheduler checks for an appropriate 

job based on the job tag and node tag. If job tag is found to 

be 0, it is scheduled directly on the data node which is ready 

for the next task. Otherwise the AND operation of job tag 

and node tag can be used to get a job with dissimilar tags. If 

a job is observed to be CPU heavy (2) then a node with node 

tag 1 and 0 is more appropriate for the task. 

IV. EVALUATION AND RESULTS 

The proposed dynamic load aware scheduler for Hadoop 

is evaluated on private and public cloud environments. 

Dynamic Load Aware Scheduler Evaluation on Private 

Cloud 

The proposed scheduler is evaluated on private cloud 

setup using VMware tools: VMware ESXi server and 

VCenter. Four VMs are created with the following 

configurations OS: Ubuntu14.0, Memory: 4GBHard Disk: 

200GB. Jobs WordCount(WC), Pi, 

RandomTextWriter(RTW), Sort, grep are used for 

evaluation of proposed work and to have accurate results 

each test case is executed for two times and the average 

execution time is considered. Capacity scheduler is 

configured with two queues of capacity configuration 50% 

each. Fig.2 to Fig.5 gives comparison of Capacity scheduler 

and proposed dynamic Capacity Scheduler Load Aware 

(CSLA) for data sizes 1GB, 2 GB and 3 GB respectively. 

 
Fig. 2: CS Vs CSLA on Private Cloud for Data 

Size=1GB 

 
Fig. 3: CS Vs CSLA on Private Cloud for Data 

Size=2GB 

 
Fig. 4: CS Vs CSLA on Private Cloud for Data 

Size=3GB 
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Fig. 5: CS vs. CSLA on Private Cloud for Data 

Size=4GB 

The above results in Fig.2 to Fig.5 indicate a good 

performance improvement from 12% to 23% using Capacity 

scheduler load aware for jobs of size 1GB, 2GB, 3GB, 4GB 

when executed on private cloud of 4 machines except for the 

jobs which have similar resource usage intensiveness like 

RTW and sort when executed simultaneously. The Proposed 

model is also tested using test cases with combination of 4 

jobs with two queues of 50% capacity each on four virtual 

machines. The set of four jobs with input data size of 3GB 

are submitted with two jobs to each queue. The makespan 

time for different combinations of jobs using Capacity 

scheduler and capacity scheduler load aware for four jobs 

with data size of 3GB on private cloud is indicated in Fig.6. 

  
Fig. 6: CS vs CSLA for Four Jobs with Data Size=3G 

The above results in Fig.6. indicate a good performance 

improvement of up to 23% using capacity scheduler 

loadaware for jobs of size 3GB when executed on private 

cloud of 4 machines except for the jobs which have similar 

resource usage patterns like Pi, WC, Sort, grep when 

executed simultaneously. 

Dynamic Load Aware Scheduler Evaluation on Public 

Cloud 

The proposed scheduler is evaluated on public cloud 

Hadoop cluster created on Amazon EC2 machines with 

basic OS as Ubuntu14.0 instances of type T2.medium by 

varying the number of instances for data nodes. Jobs RTW, 

WC, Pi, Sort, grep are used for evaluation. To get accurate 

results each pair of jobs is executed for two times and the 

average of execution time is used. Fig.7 to Fig.10 indicates 

the makespan for capacity scheduler and capacity scheduler 

load aware scheduler for test cases of data sizes of 1GB, 

2GB, 3GB and 4GB. 

 
Fig. 7: CS vs. CSLA on Public Cloud for Data Size=1GB 

 
Fig. 8: CS vs. CSLA on Public Cloud for Data Size=2GB 

 
Fig. 9: CS vs. CSLA on Public Cloud for Data Size=3GB 

 
Fig. 10: CS vs. CSLA on Public Cloud for Data 

Size=4GB 

The above results in Fig.7 to Fig.10 indicate a good 

performance improvement of up to 24% for jobs of size 

1GB, 2GB, 3GB when executed on public cloud of 4 

machines except for the jobs with similar resource usage 

intensiveness. Proposed model is also tested for combination 

of 4 jobs. The set of four jobs with input data size of 3GB 

are submitted with two jobs to each queue of capacity 50  
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and Fig.11 provides the comparison of makespan time for 

Capacity scheduler and capacity scheduler load aware on 

public cloud Amazon EC2. 
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Fig. 11: CS vs. CSLA on Public Cloud for Four Jobs 

with Data Size 3G 

The above results in Fig.11 indicate a good performance 

improvement using capacity scheduler load aware up to 

20% for jobs of size 3GB when executed on public cloud of 

4 machines except for the jobs with very similar resource 

usage intensiveness.  

V. CONCLUSION 

A dynamic load aware scheduler for Hadoop framework 

which can schedule the Map Reduce tasks based on resource 

requirements of the task and resource availability of the 

node is designed and implemented. The results indicate an 

improvement of up to 24% in execution time when 

scheduling is done using proposed dynamic load aware 

scheduler compared to default capacity scheduler of 

Hadoop. 

The improvement in execution times increases as the 

number of machines used to execute the Hadoop jobs 

increases. The proposed dynamic load aware scheduler is 

more efficient for Hadoop clusters with more number of 

data nodes. This work can be further extended to have 

automatic Hadoop configuration parameter settings based on 

job resource usage characteristics to achieve optimized 

performance. 
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