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 

Abstract: Software program optimization for improved 

execution speed can be achieved through modifying the program. 

Programs are usually written in high level languages then 

translated into low level assembly language. More coverage of 

optimization and performance analysis can be performed on low 

level than high level language. Optimization improvement is 

measured in the difference in program execution performance. 

Several methods are available for measuring program 

performance are classified into static approaches and dynamic 

approaches. This paper presents an alternative method of more 

accurately measuring code performance statically than commonly 

used code analysis metrics. New metrics proposed are designed to 

expose effectiveness of optimization performed on code, 

specifically unroll optimizations. An optimization method, loop 

unroll is used to demonstrate the effectiveness of the increased 

accuracy of the proposed metric. The results of the study show that 

measuring Instructions Performed and Instruction Latency is a 

more accurate static metric than Instruction Count and 

subsequently those based on it. 

 
Index Terms: Assembly Programming, Code Profiling, 

Performance Metrics. Instruction Set Architecture, Loop Unroll, 

Vectorization, Compiler, Software Optimization, Time 

Complexity. 

I. INTRODUCTION 

  Software program optimization for improved execution 

speed can be achieved through modifying the program. 

Programs are usually compiled from a high level language 

into machine low level language. More coverage of 

optimization and performance analysis can be performed on 

low level than high level language. Discussed are the process 

of how a program is transformed from the programmer’s code 

into a language that the processor natively understands. And 

presents strategic choice on which portion of this process is 

best for implementing optimizations on. 

Optimization improvement is measured in the difference in 

execution performance. Several methods are available for 

measuring code performance classified into static and 

dynamic approaches [1]. Dynamic approaches involves actual 

program runtime, but less focus on analysis of code. Current   

 

Static approaches involves simplistic analysis of the code, 

Instruction Count (IC). Discussed are the advantages and  
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disadvantages of IC and alternative methods to more 

accurately measuring code performance statically. 

New metrics presented are named Instructions Performed 

and Program Latency. These metrics are initially designed to 

expose effectiveness of unroll optimization performed on 

code. But can be used to more accurately represent code 

performance. 

An optimization method, loop unroll is used to demonstrate 

the effectiveness of the increased accuracy of the proposed 

metric. A method for optimizing assembly code [2] used by 

popular compilers GCC and ICC [3]. 

II. CODE TRANSLATION AND OPTIMIZATION 

Software is most commonly written on High Level 

Languages then translated into Low Level Language native to 

the processor that the software will be executed on 

[4][5][16][18]. Translation can be done either through 

Interpretation or Compilation. Interpretation is done on a line 

per line analysis then execution of the written source code. 

Examples are Python and R. Compilation is when the whole 

source code is analyzed and the whole software is translated at 

once. Example of a compiled language is C. 

Software optimization is more commonly performed in 

compiled language than in interpreted language because of 

the available knowledge of the complete flow of the program 

presented at compile time. Also there is more time available 

to perform optimizations during compile time while in 

interpreting the language, there is significant overhead caused 

during optimization. 

Optimization can be performed on either high level 

language or in low level language. However we suppose that 

more coverage, practicality, and effectiveness of optimization 

can be achieved on low level. There is more coverage because 

there are more languages being compiled to a single processor 

architecture [6]. It is also more practical in that there are fewer 

architectures than languages to perform optimizations on. It is 

also more effective because of the closer relationship of the 

optimization to the actual processor hardware  
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[15][18][23][24][25][30]. Popular processor architecture 

families that are subject to optimizations are: x86 

architectures, ARM architectures, and MIPS architectures. 

Consequently, analysis of the optimization is also best done 

on low level languages. Measuring the performance of a code 

and also the effectiveness of an optimization is done using 

performance metrics. Popular metrics are discussed and also a 

more accurate proposed metric is also presented. 

Optimization could be of different interests 

[16][17][20][21][26], of which are: code size, code density 

[7], speed, memory, data, network, and power consumption. 

The focus of this paper is speed; shorter execution time.  

Optimization for speed is best achieved when the software 

program takes advantage of the processor architecture’s 

features such as pipelined processors and out of order 

execution. 

 
Figure 1. MIPS Pipeline example 

 

Pipeline is a feature wherein several machine instructions 

can be performed at once. The pipeline is maximized in 

software by reduction of stalls. A stall processor state is when 

an execution unit is waiting for a data dependency. Stalls are 

reduced when dependencies are avoided, this can be done by 

modifying the assembly code [8][9][10][27]. Figure 1 shows 

a MIPS pipeline with and without a stall, a stall causes 

instructions to consume more processor cycles. In an Ideal 

Pipeline, all the stages: Instruction Fetch (IF), Instruction 

Decode (ID), Execute (EX), Memory Access (MEM), and 

Write Back (WB), perform in lockstep; each instruction is 

completed in 5 cycles. In a Stalled Pipeline however, due to 

either a dependency on a previous instruction or a lack of 

resources, an instruction has to be stalled in order for the 

program to execute correctly. 

Software optimization is still closely coupled with 

knowledge of the computer architecture being used and its 

actual implementation. One common cause of stalls are jumps 

in assembly programs. Jumps are typically caused by 

conditional statements and loops. One method of optimization 

is by minimizing usage of jumps in loops by performing loop 

unroll. 

Loop unrolling extends source code such that the use of 

branch instructions is reduced. The method of unrolling a 

loop will not be discussed but as a summary, loop unrolling 

increases code length in exchange for reduced latency from 

branching instructions. As illustrated in Figure 2. 

 
Figure 2. Example of an unrolled loop 

III. CURRENT PERFORMANCE METRICS 

 The effectiveness of any optimization method must be 

tested and measured before claiming that the method actually 

optimizes for a specific interest. This measurement is done by 

using program performance metrics. Code performance 

metrics have two categories: static and dynamic. 

Dynamic metrics are the measurement of the program 

performance during actual runtime. This can be done through 

the use of the clock() function in C. Figure 3 illustrates this 

method. The clock() function is used to obtain the starting and 

ending times of the program. The execution time of the 

program is calculated by subtracting the start and end time. 

 
Figure 3. Performance measurement using C function 

clock() 

 

The simplicity of this measurement approach is its main 

advantage. A second advantage is the return of measurements 

in actual time. One of the disadvantages of this method is its 

unreliability when a program requires user input. Another 

disadvantageous situation is when the measurement is 

performed in a multitasking environment; where the results 

will always include the effects of the other programs running 

in the same computer. This causes an inaccuracy where the 

resulting time is more than what the program actually 

consumes. There are approaches to overcome the challenges 

presented by multitasking. One approach is to combine the 

measurement with static profiling of the code. 

The focus of this paper is on Static methods of determining 

code performance. One of the most popular metrics for 

comparison is through Instruction Count (IC). IC is the 

number of lines that are in the Code Segment of an assembly 

code program [8][9]. White space lines, and assembler 

directive are not included in the instruction count. 
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IC is the most simplistic static metric for a program. An 

advantage of this metric is that it is easy to perform. Another 

commonly used metric for assembly program code 

measurement is the CPU Time shown in equation (1). CPU 

Time includes the actual speeds of the processor thus should 

yield the actual time [8][9]. 

 
For pipelined processors, the Clock Cycle per Instruction 

of equation (1) be replaced with Pipeline CPI. Which 

considers the processor pipeline feature. This yields a more 

accurate result in case of computing for a pipelined processor 

[4]. 

 
Figure 4. Instructions Performed of a Looping and 

Non-Looping Program 

 

Figure 4 above will be used to display the limitation of 

Instruction Count (IC). Program has an IC of 5 while Program 

B has an IC of 8. Program B has a higher IC. However when 

the two programs were ran Program A has more instructions 

that were performed. This limitation of IC is because it does 

not have consideration of programming loops. Lepak et al. [4] 

also agree with the unreliability of instruction count in 

multiprocessor systems and discuss a simulation methodology 

for improved performance measurement. 

 
Figure 5. Instructions Performed of a Jumping Program 

 

Another limitation of Instruction Count is exposed in 

Figure 5 above. A program has less instructions performed 

than its IC. This inaccuracy is because IC does not have 

consideration for branches or jumps. 

The inaccuracy of IC is also propagated to the CPU Time 

equation (1). Since IC is a part of CPU Time. Solving this 

inaccuracy is important for comparing an optimized and an 

unoptimized code. That is because an optimized code can 

have a higher IC but may not necessarily be slower. 

IV. OPTIMIZER EFFECTIVENESS 

A different metric was developed by this study that would 

provide a more accurate performance analysis of the program 

code. The metric takes into consideration programming 

blocks. The metric uses an analysis of the instructions that 

will be performed by the code after execution. This solution 

will be called Instructions Performed for the rest of the 

discussion. 

Instructions Performed is the number of instructions 

executed by the program during runtime. This takes into 

consideration blocks of code that are repeated while the 

program is running. Blocks of code that are ignored on 

runtime are also accounted. For a more accurate CPU time in 

equation (1), the Instruction Count can be replaced by 

Instructions Performed. 

Instruction Latency is similar to instructions performed 

with added consideration to the latency of each instruction. As 

different instructions take different time in some architectures 

such as the x86_64 architecture. For the x86_64, latency per 

instruction information is defined by their document for 

recommendations for compiler developers in [11] and other 

processor related documents [19][22][29]. 

V. METHODOLOGY 

The method for computation of proposed metrics 

Instructions Performed and Program Latency is explained by 

demonstration. Below are Fibonacci programs written in 

different processor assembly languages. The computation for 

the proposed metrics are shown alongside the code. 

 
Figure 6. Instructions Performed of MIPS64 Fibonacci 

code 
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Figure 6 shows a MIPS64 code for computing 8 Fibonacci 

numbers and stores those numbers into memory. The steps for 

computing Instructions Performed is displayed in the table to 

the right of the code. The steps in computing the Instructions 

Performed are presented as columns, read from left to right. 

 
Figure 7. Instructions Performed of x86_64 Fibonacci 

code 

 

Figure 7 shows the same Fibonacci code but implemented 

for the x86_64 architecture. The following steps are done in 

order to compute for the Instructions Performed. First step is 

to separate the code into basic programming blocks. Second is 

to determine the type of blocks. Third is to count the number 

of instructions in each block. Fourth is to determine the 

number of repetitions the block will be performed throughout 

the program. This can be determined by analyzing the value 

assigned to the loop counter before entering the block. 

Typically, only a 2way block has more than 1 repetition. If the 

number of repetitions cannot be determined, just assume that 

the block is executed once. A single execution is chosen as 

default because a block of code would usually be at least used 

once. Fifth step is to multiply the Instruction Count and block 

repetition. Sixth and final step is to sum the products and the 

result is the Instructions Performed. 

 
Figure 8. Program Latency of x86_64 Fibonacci code 

 

Figure 8 shows the computation for Program Latency for 

the x86_64 Fibonacci program. To compute for Program 

Latency are the following steps. First is to separate the code 

into blocks. Second is to determine the type of block. Third is 

to determine the latency per each instruction (refer to 

processor documentation for this step). Fourth is to sum the 

latencies per each block. Fifth is to determine the block 

repetition. Sixth is to multiply the block repetition and block 

latency. Seventh and final step is to sum the products and the 

result is Program Latency. 

VI. TEST AND RESULT 

 Testing the effectiveness of the proposed metrics 

Instructions Performed and Program Latency is demonstrated 

via comparison of computed values on an optimized and an 

unoptimized version of the Fibonacci codes presented. The 

optimization method used is loops unrolling. The proof of 

loop unroll effectiveness can only be exposed in increased 

accuracy offered by the proposed metrics. 

 
Figure 9. Instructions Performed of x86_64 unrolled 

Fibonacci 

 

Figure 9 shows an unrolled loop from the program shown 

in Figures 7 and 8 unrolled with a factor of 4 wherein the loop 

instruction is placed at the bottom and a decrement of the loop 

counter is placed in between each unroll block. The unrolled 

block resulted in an instruction count of 16, while the original 

program has an instruction count of 4 for the same block. The 

Instruction Count is increased for the unrolled program, but 

the instructions performed are the same, 33 Instructions 

Performed. 
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Figure 10. Program Latency of x86_64 unrolled 

Fibonacci 

 

Figure 10 is the same program as shown in Figure 9 but 

displays computation for Program Latency. The computed 

program latency for the unrolled program is 47 which is less 

than 89 from the original program. While having a higher 

Instruction Count than the original program, the unrolled 

program has less latency. This is because the use of high 

latency instructions has been reduced by unrolling. 

 
Figure 11. Different metrics on x86 Fibonacci code 

 

Figure 11 shows the comparison of Instruction Count, 

Instructions Performed, and Program Latency from the 

original x86 Fibonacci code to the unrolled Fibonacci code. It 

is shown that the original code has less Instruction Count. 

Both have the same Instructions Performed. But the unrolled 

program has less Program Latency. 

 
Figure 12. Different metrics on MIPS Fibonacci code 

 

Figure 12 displays the Instruction Count, Instructions 

Performed, and Program Latency for the MIPS64 Fibonacci 

code shown in Figure 6. It is important to note that for the case 

of MIPS64 programs, the Instructions Performed is the same 

as the Program Latency because the MIPS64 architecture has 

uniform latency for all of its instructions. 

VII. ANALYZING TIME COMPLEXITIES 

Big O notation used for measuring code performance in 

terms of growth function of an algorithm’s frequency count of 

its basic operation [12][13][14]. The proposed method for 

computation can be extended to also express time 

complexities in terms of big O notation. Not all types of big O 

notation can be detected and expressed and are limited to the 

following: O(1), O(n), O(nx) where x is a non-zero positive 

integer. The extension procedures is placed on the loop 

detection portion:  

1. if no loop is detected, then O(1),  

2. if a loop is detected and there is no nested-loop, then 

O(n), 

3. if a loop is detected and nested loop, then O(nx) where x 

is the layer of the deepest nest. 

It should also be noted that for O(nx) the iterations of the 

loops are assumed to be the same for all layers thus nx does 

not cover all cases. Example 1 assume a 3 layer nested loop 

where the 1st, 2nd, and 3rd layers have the same n iterations, 

then our output O(n3) is correct. Example 2, assume a 3 layer 

nested loop where the layers 1st has n iterations, 2nd has o, 

and 3rd has p, then our output O(n3) is not correct because n is 

not a single number, we could average (n+o+p)/3 for a better 

approximate but it is still not accurate. Example 3 assume a 3 

layer nested loop where 1st has n, 2nd has o, 3rd has a 

constant 7 iterations, then our output O(n3) is not correct 

because the deepest layer is 3 but the third layer is actually a 

constant and the correct answer is O(n2). 

VIII. CONCLUSION 

The presented metrics: Instruction Performed and Program 

Latency provide a more accurate representation of code 

performance than Instruction Count based metrics because of 

its increased accuracy. Approximation of Time Complexities 

are also presented. The presented methods also provide a tool 

to prove that a higher Instruction Count does not necessitate a 

faster running program as shown in the case of an unrolled 

loop. From the results in Figure 11 it can be seen that the 

effectiveness of loop unroll can best be statically determined 

through computing the Program Latency. An unrolled 

program has longer Instruction Count but has significantly 

better Program Latency, outperforming the original code. 

It is important to note that the relationship between 

Instructions Performed and Program Latency is dissimilar 

from that of the Instruction Count and Program Latency. The 

worst comparative result that Instructions Performed can 

provide is failing to expose performance gain, but it will not 

be the reverse from the Program Latency as was in Instruction 

Count. Thus, Instructions Performed is still more accurate 

than Instruction Count. 

The most accurate metric presented, Program Latency, 

requires deeper knowledge of the processor as it requires 

information regarding the latency of each instruction. This 

information can sometimes be inherent to the processor 

architecture, as in MIPS64 having uniform latency for each  
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instruction shown in Figure 12. Latency per instruction can 

also be provided by the processor architecture manufacturer, 

as is the case in x86_64 architecture with [11]. But in some 

cases, this kind of information is not easily available, thus 

Program Latency cannot be computed for some architectures. 

Presented in this paper was a more accurate method of 

statically determining code performance and an approximate 

of the time complexity of a program designed to display the 

effectiveness of an optimization by more accurately exposing 

performance differences. The accuracy is with the cost of 

tediousness and should be implemented into software that 

automatically computes for the Instructions Performed and 

Program Latency. Other future work includes further testing 

of the static profiling in terms of time complexity. 
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