
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S8, August 2019

1463

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10830882S819/2019©BEIESP

DOI:10.35940/ijrte.B1083.0882S819



Abstract: Software program optimization for improved

execution speed can be achieved through modifying the program.

Programs are usually written in high level languages then

translated into low level assembly language. More coverage of

optimization and performance analysis can be performed on low

level than high level language. Optimization improvement is

measured in the difference in program execution performance.

Several methods are available for measuring program

performance are classified into static approaches and dynamic

approaches. This paper presents an alternative method of more

accurately measuring code performance statically than commonly

used code analysis metrics. New metrics proposed are designed to

expose effectiveness of optimization performed on code,

specifically unroll optimizations. An optimization method, loop

unroll is used to demonstrate the effectiveness of the increased

accuracy of the proposed metric. The results of the study show that

measuring Instructions Performed and Instruction Latency is a

more accurate static metric than Instruction Count and

subsequently those based on it.

Index Terms: Assembly Programming, Code Profiling,

Performance Metrics. Instruction Set Architecture, Loop Unroll,

Vectorization, Compiler, Software Optimization, Time

Complexity.

I. INTRODUCTION

 Software program optimization for improved execution

speed can be achieved through modifying the program.

Programs are usually compiled from a high level language

into machine low level language. More coverage of

optimization and performance analysis can be performed on

low level than high level language. Discussed are the process

of how a program is transformed from the programmer’s code

into a language that the processor natively understands. And

presents strategic choice on which portion of this process is

best for implementing optimizations on.

Optimization improvement is measured in the difference in

execution performance. Several methods are available for

measuring code performance classified into static and

dynamic approaches [1]. Dynamic approaches involves actual

program runtime, but less focus on analysis of code. Current

Static approaches involves simplistic analysis of the code,

Instruction Count (IC). Discussed are the advantages and

Revised Manuscript Received on August 19, 2019.

 Jonathan Paul C. Cempron, Computer Technology Department,

College of Computer Studies, De La Salle University, Manila, Philippines.

Chudrack Shalym Y. Salinas, Computer Technology Department,

College of Computer Studies, De La Salle University, Manila, Philippines.

Roger Luis Uy, Computer Technology Department, College of

Computer Studies, De La Salle University, Manila, Philippines.

disadvantages of IC and alternative methods to more

accurately measuring code performance statically.

New metrics presented are named Instructions Performed

and Program Latency. These metrics are initially designed to

expose effectiveness of unroll optimization performed on

code. But can be used to more accurately represent code

performance.

An optimization method, loop unroll is used to demonstrate

the effectiveness of the increased accuracy of the proposed

metric. A method for optimizing assembly code [2] used by

popular compilers GCC and ICC [3].

II. CODE TRANSLATION AND OPTIMIZATION

Software is most commonly written on High Level

Languages then translated into Low Level Language native to

the processor that the software will be executed on

[4][5][16][18]. Translation can be done either through

Interpretation or Compilation. Interpretation is done on a line

per line analysis then execution of the written source code.

Examples are Python and R. Compilation is when the whole

source code is analyzed and the whole software is translated at

once. Example of a compiled language is C.

Software optimization is more commonly performed in

compiled language than in interpreted language because of

the available knowledge of the complete flow of the program

presented at compile time. Also there is more time available

to perform optimizations during compile time while in

interpreting the language, there is significant overhead caused

during optimization.

Optimization can be performed on either high level

language or in low level language. However we suppose that

more coverage, practicality, and effectiveness of optimization

can be achieved on low level. There is more coverage because

there are more languages being compiled to a single processor

architecture [6]. It is also more practical in that there are fewer

architectures than languages to perform optimizations on. It is

also more effective because of the closer relationship of the

optimization to the actual processor hardware

Static Profiling of Assembly Code Performance

and Optimization Effectiveness using

Instructions Performed and Program Latency

Jonathan Paul C. Cempron, Chudrack Shalym Y. Salinas, Roger Luis Uy

Static Profiling of Assembly Code Performance and Optimization Effectiveness using Instructions Performed and

Program Latency

1464

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10830882S819/2019©BEIESP

DOI:10.35940/ijrte.B1083.0882S819

[15][18][23][24][25][30]. Popular processor architecture

families that are subject to optimizations are: x86

architectures, ARM architectures, and MIPS architectures.

Consequently, analysis of the optimization is also best done

on low level languages. Measuring the performance of a code

and also the effectiveness of an optimization is done using

performance metrics. Popular metrics are discussed and also a

more accurate proposed metric is also presented.

Optimization could be of different interests

[16][17][20][21][26], of which are: code size, code density

[7], speed, memory, data, network, and power consumption.

The focus of this paper is speed; shorter execution time.

Optimization for speed is best achieved when the software

program takes advantage of the processor architecture’s

features such as pipelined processors and out of order

execution.

Figure 1. MIPS Pipeline example

Pipeline is a feature wherein several machine instructions

can be performed at once. The pipeline is maximized in

software by reduction of stalls. A stall processor state is when

an execution unit is waiting for a data dependency. Stalls are

reduced when dependencies are avoided, this can be done by

modifying the assembly code [8][9][10][27]. Figure 1 shows

a MIPS pipeline with and without a stall, a stall causes

instructions to consume more processor cycles. In an Ideal

Pipeline, all the stages: Instruction Fetch (IF), Instruction

Decode (ID), Execute (EX), Memory Access (MEM), and

Write Back (WB), perform in lockstep; each instruction is

completed in 5 cycles. In a Stalled Pipeline however, due to

either a dependency on a previous instruction or a lack of

resources, an instruction has to be stalled in order for the

program to execute correctly.

Software optimization is still closely coupled with

knowledge of the computer architecture being used and its

actual implementation. One common cause of stalls are jumps

in assembly programs. Jumps are typically caused by

conditional statements and loops. One method of optimization

is by minimizing usage of jumps in loops by performing loop

unroll.

Loop unrolling extends source code such that the use of

branch instructions is reduced. The method of unrolling a

loop will not be discussed but as a summary, loop unrolling

increases code length in exchange for reduced latency from

branching instructions. As illustrated in Figure 2.

Figure 2. Example of an unrolled loop

III. CURRENT PERFORMANCE METRICS

 The effectiveness of any optimization method must be

tested and measured before claiming that the method actually

optimizes for a specific interest. This measurement is done by

using program performance metrics. Code performance

metrics have two categories: static and dynamic.

Dynamic metrics are the measurement of the program

performance during actual runtime. This can be done through

the use of the clock() function in C. Figure 3 illustrates this

method. The clock() function is used to obtain the starting and

ending times of the program. The execution time of the

program is calculated by subtracting the start and end time.

Figure 3. Performance measurement using C function

clock()

The simplicity of this measurement approach is its main

advantage. A second advantage is the return of measurements

in actual time. One of the disadvantages of this method is its

unreliability when a program requires user input. Another

disadvantageous situation is when the measurement is

performed in a multitasking environment; where the results

will always include the effects of the other programs running

in the same computer. This causes an inaccuracy where the

resulting time is more than what the program actually

consumes. There are approaches to overcome the challenges

presented by multitasking. One approach is to combine the

measurement with static profiling of the code.

The focus of this paper is on Static methods of determining

code performance. One of the most popular metrics for

comparison is through Instruction Count (IC). IC is the

number of lines that are in the Code Segment of an assembly

code program [8][9]. White space lines, and assembler

directive are not included in the instruction count.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S8, August 2019

1465

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10830882S819/2019©BEIESP

DOI:10.35940/ijrte.B1083.0882S819

IC is the most simplistic static metric for a program. An

advantage of this metric is that it is easy to perform. Another

commonly used metric for assembly program code

measurement is the CPU Time shown in equation (1). CPU

Time includes the actual speeds of the processor thus should

yield the actual time [8][9].

For pipelined processors, the Clock Cycle per Instruction

of equation (1) be replaced with Pipeline CPI. Which

considers the processor pipeline feature. This yields a more

accurate result in case of computing for a pipelined processor

[4].

Figure 4. Instructions Performed of a Looping and

Non-Looping Program

Figure 4 above will be used to display the limitation of

Instruction Count (IC). Program has an IC of 5 while Program

B has an IC of 8. Program B has a higher IC. However when

the two programs were ran Program A has more instructions

that were performed. This limitation of IC is because it does

not have consideration of programming loops. Lepak et al. [4]

also agree with the unreliability of instruction count in

multiprocessor systems and discuss a simulation methodology

for improved performance measurement.

Figure 5. Instructions Performed of a Jumping Program

Another limitation of Instruction Count is exposed in

Figure 5 above. A program has less instructions performed

than its IC. This inaccuracy is because IC does not have

consideration for branches or jumps.

The inaccuracy of IC is also propagated to the CPU Time

equation (1). Since IC is a part of CPU Time. Solving this

inaccuracy is important for comparing an optimized and an

unoptimized code. That is because an optimized code can

have a higher IC but may not necessarily be slower.

IV. OPTIMIZER EFFECTIVENESS

A different metric was developed by this study that would

provide a more accurate performance analysis of the program

code. The metric takes into consideration programming

blocks. The metric uses an analysis of the instructions that

will be performed by the code after execution. This solution

will be called Instructions Performed for the rest of the

discussion.

Instructions Performed is the number of instructions

executed by the program during runtime. This takes into

consideration blocks of code that are repeated while the

program is running. Blocks of code that are ignored on

runtime are also accounted. For a more accurate CPU time in

equation (1), the Instruction Count can be replaced by

Instructions Performed.

Instruction Latency is similar to instructions performed

with added consideration to the latency of each instruction. As

different instructions take different time in some architectures

such as the x86_64 architecture. For the x86_64, latency per

instruction information is defined by their document for

recommendations for compiler developers in [11] and other

processor related documents [19][22][29].

V. METHODOLOGY

The method for computation of proposed metrics

Instructions Performed and Program Latency is explained by

demonstration. Below are Fibonacci programs written in

different processor assembly languages. The computation for

the proposed metrics are shown alongside the code.

Figure 6. Instructions Performed of MIPS64 Fibonacci

code

Static Profiling of Assembly Code Performance and Optimization Effectiveness using Instructions Performed and

Program Latency

1466

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10830882S819/2019©BEIESP

DOI:10.35940/ijrte.B1083.0882S819

Figure 6 shows a MIPS64 code for computing 8 Fibonacci

numbers and stores those numbers into memory. The steps for

computing Instructions Performed is displayed in the table to

the right of the code. The steps in computing the Instructions

Performed are presented as columns, read from left to right.

Figure 7. Instructions Performed of x86_64 Fibonacci

code

Figure 7 shows the same Fibonacci code but implemented

for the x86_64 architecture. The following steps are done in

order to compute for the Instructions Performed. First step is

to separate the code into basic programming blocks. Second is

to determine the type of blocks. Third is to count the number

of instructions in each block. Fourth is to determine the

number of repetitions the block will be performed throughout

the program. This can be determined by analyzing the value

assigned to the loop counter before entering the block.

Typically, only a 2way block has more than 1 repetition. If the

number of repetitions cannot be determined, just assume that

the block is executed once. A single execution is chosen as

default because a block of code would usually be at least used

once. Fifth step is to multiply the Instruction Count and block

repetition. Sixth and final step is to sum the products and the

result is the Instructions Performed.

Figure 8. Program Latency of x86_64 Fibonacci code

Figure 8 shows the computation for Program Latency for

the x86_64 Fibonacci program. To compute for Program

Latency are the following steps. First is to separate the code

into blocks. Second is to determine the type of block. Third is

to determine the latency per each instruction (refer to

processor documentation for this step). Fourth is to sum the

latencies per each block. Fifth is to determine the block

repetition. Sixth is to multiply the block repetition and block

latency. Seventh and final step is to sum the products and the

result is Program Latency.

VI. TEST AND RESULT

 Testing the effectiveness of the proposed metrics

Instructions Performed and Program Latency is demonstrated

via comparison of computed values on an optimized and an

unoptimized version of the Fibonacci codes presented. The

optimization method used is loops unrolling. The proof of

loop unroll effectiveness can only be exposed in increased

accuracy offered by the proposed metrics.

Figure 9. Instructions Performed of x86_64 unrolled

Fibonacci

Figure 9 shows an unrolled loop from the program shown

in Figures 7 and 8 unrolled with a factor of 4 wherein the loop

instruction is placed at the bottom and a decrement of the loop

counter is placed in between each unroll block. The unrolled

block resulted in an instruction count of 16, while the original

program has an instruction count of 4 for the same block. The

Instruction Count is increased for the unrolled program, but

the instructions performed are the same, 33 Instructions

Performed.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S8, August 2019

1467

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10830882S819/2019©BEIESP

DOI:10.35940/ijrte.B1083.0882S819

Figure 10. Program Latency of x86_64 unrolled

Fibonacci

Figure 10 is the same program as shown in Figure 9 but

displays computation for Program Latency. The computed

program latency for the unrolled program is 47 which is less

than 89 from the original program. While having a higher

Instruction Count than the original program, the unrolled

program has less latency. This is because the use of high

latency instructions has been reduced by unrolling.

Figure 11. Different metrics on x86 Fibonacci code

Figure 11 shows the comparison of Instruction Count,

Instructions Performed, and Program Latency from the

original x86 Fibonacci code to the unrolled Fibonacci code. It

is shown that the original code has less Instruction Count.

Both have the same Instructions Performed. But the unrolled

program has less Program Latency.

Figure 12. Different metrics on MIPS Fibonacci code

Figure 12 displays the Instruction Count, Instructions

Performed, and Program Latency for the MIPS64 Fibonacci

code shown in Figure 6. It is important to note that for the case

of MIPS64 programs, the Instructions Performed is the same

as the Program Latency because the MIPS64 architecture has

uniform latency for all of its instructions.

VII. ANALYZING TIME COMPLEXITIES

Big O notation used for measuring code performance in

terms of growth function of an algorithm’s frequency count of

its basic operation [12][13][14]. The proposed method for

computation can be extended to also express time

complexities in terms of big O notation. Not all types of big O

notation can be detected and expressed and are limited to the

following: O(1), O(n), O(nx) where x is a non-zero positive

integer. The extension procedures is placed on the loop

detection portion:

1. if no loop is detected, then O(1),

2. if a loop is detected and there is no nested-loop, then

O(n),

3. if a loop is detected and nested loop, then O(nx) where x

is the layer of the deepest nest.

It should also be noted that for O(nx) the iterations of the

loops are assumed to be the same for all layers thus nx does

not cover all cases. Example 1 assume a 3 layer nested loop

where the 1st, 2nd, and 3rd layers have the same n iterations,

then our output O(n3) is correct. Example 2, assume a 3 layer

nested loop where the layers 1st has n iterations, 2nd has o,

and 3rd has p, then our output O(n3) is not correct because n is

not a single number, we could average (n+o+p)/3 for a better

approximate but it is still not accurate. Example 3 assume a 3

layer nested loop where 1st has n, 2nd has o, 3rd has a

constant 7 iterations, then our output O(n3) is not correct

because the deepest layer is 3 but the third layer is actually a

constant and the correct answer is O(n2).

VIII. CONCLUSION

The presented metrics: Instruction Performed and Program

Latency provide a more accurate representation of code

performance than Instruction Count based metrics because of

its increased accuracy. Approximation of Time Complexities

are also presented. The presented methods also provide a tool

to prove that a higher Instruction Count does not necessitate a

faster running program as shown in the case of an unrolled

loop. From the results in Figure 11 it can be seen that the

effectiveness of loop unroll can best be statically determined

through computing the Program Latency. An unrolled

program has longer Instruction Count but has significantly

better Program Latency, outperforming the original code.

It is important to note that the relationship between

Instructions Performed and Program Latency is dissimilar

from that of the Instruction Count and Program Latency. The

worst comparative result that Instructions Performed can

provide is failing to expose performance gain, but it will not

be the reverse from the Program Latency as was in Instruction

Count. Thus, Instructions Performed is still more accurate

than Instruction Count.

The most accurate metric presented, Program Latency,

requires deeper knowledge of the processor as it requires

information regarding the latency of each instruction. This

information can sometimes be inherent to the processor

architecture, as in MIPS64 having uniform latency for each

Static Profiling of Assembly Code Performance and Optimization Effectiveness using Instructions Performed and

Program Latency

1468

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10830882S819/2019©BEIESP

DOI:10.35940/ijrte.B1083.0882S819

instruction shown in Figure 12. Latency per instruction can

also be provided by the processor architecture manufacturer,

as is the case in x86_64 architecture with [11]. But in some

cases, this kind of information is not easily available, thus

Program Latency cannot be computed for some architectures.

Presented in this paper was a more accurate method of

statically determining code performance and an approximate

of the time complexity of a program designed to display the

effectiveness of an optimization by more accurately exposing

performance differences. The accuracy is with the cost of

tediousness and should be implemented into software that

automatically computes for the Instructions Performed and

Program Latency. Other future work includes further testing

of the static profiling in terms of time complexity.

REFERENCES

1. Y. Han "Application performance evaluation on different compiler

optimizations" (ACSA) 410. Vol. 2 No. 3 ISSN 2166–2924. 2013.

2. V. P. Bharadwaj and M. Rao, "Compiler optimization for superscalar

and pipelined processors," 2016 IEEE Distributed Computing, VLSI,

Electrical Circuits and Robotics (DISCOVER), Mangalore, 2016, pp.

232-236. doi: 10.1109/DISCOVER.2016.7806224

3. R. S. Machado, R. B. Almeida, A. D. Jardim, A. M. Pernas, A. C. Yamin

and G. G. H. Cavalheiro, "Comparing Performance of C Compilers

Optimizations on Different Multicore Architectures," 2017 International

Symposium on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW), Campinas, 2017, pp. 25-30.

doi: 10.1109/SBAC-PADW.2017.13

4. K. Lepak, H. Cain, M. Lipasti. 2003. Redeeming IPC as a Performance

Metric for Multithreaded Programs. 12th International Conference on

Parallel Architectures and Compilation Techniques; 2003; New

Orleans, LA, USA, USA. p. 232-243.

5. T. L. Casavant, "Low-level programming of parallel supercomputers,"

Proceedings COMPSAC 88: The Twelfth Annual International

Computer Software & Applications Conference, Chicago, IL, 1988, pp.

274-275. doi: 10.1109/CMPSAC.1988.17185

6. S. Aletan and W. Lively, "Architectural design methodology for

supporting high level programming languages," Proceedings. 1988

International Conference on Computer Languages, Miami Beach, FL,

USA, 1988, pp. 356-363. doi: 10.1109/ICCL.1988.13084

7. MCKEE S, WEAVER V. 2009. Code Density Concerns for New

Architectures. 2009 IEEE International Conference on Computer

Design; 2009; Lake Tahoe, CA, USA. p. 459-464.

8. Patterson, D. and Hennessy, J. Computer Architecture A Quantitative

Approach, 5th ed. Massachusetts, USA: Waltham, 2012, pp. 148-334.

9. Patterson, D. and Hennessy, J. Computer Organization and Design The

Hardware / Software Interface. Massachusetts, USA: Burlington, 2009.

10. D. Patti, A. Spadaccini, M. Palesi, F. Fazzino and V. Catania,

"Supporting Undergraduate Computer Architecture Students Using a

Visual MIPS64 CPU Simulator," in IEEE Transactions on Education,

vol. 55, no. 3, pp. 406-411, Aug. 2012. doi: 10.1109/TE.2011.2180530

11. Intel Corporation, (2010). A Guide to Vectorization with Intel C++

Compilers [Online]. Available:

https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-Compil

erAutovectorizationGuide.pdf

12. H. El-Aawar, "An application of complexity measures in addressing

modes for CISC- and RISC-architectures," 2008 IEEE International

Conference on Industrial Technology, Chengdu, 2008, pp. 1-7. doi:

10.1109/ICIT.2008.4608682

13. B. Holland, G. R. Santhanam, P. Awadhutkar and S. Kothari,

"Statically-Informed Dynamic Analysis Tools to Detect Algorithmic

Complexity Vulnerabilities," 2016 IEEE 16th International Working

Conference on Source Code Analysis and Manipulation (SCAM),

Raleigh, NC, 2016, pp. 79-84. doi: 10.1109/SCAM.2016.23

14. H. El-Aawar, "CISC vs. RISC Hardware and Programming Complexity

Measures of Addressing Modes," Proceedings of the 2nd International

Conference on Perspective Technologies and Methods in MEMS

Design, Lviv, 2006, pp. 43-48. doi:

10.1109/MEMSTECH.2006.288660

15. Seyfarth, R. "Introduction to 64 bit Assembly Language Programming

for Linux", School of Computing University of Southern Mississippi

Hattiesburg, 2014.

16. Aho, A., et al., Compilers Principles, Techniques, & Tools, 2nd ed.

Boston, Pearson Addison Wesley, 2007.

17. Ming, L. and Qixian, C., "A Research for the Optimization of MIPS

Instruction Set Simulation," in Computer Science & Education, 2009.

ICCSE '09. 4th International Conference, Nanning, 2009, pp.

1886-1888.

18. J. M. Sibigtroth, "Programming fuzzy logic in assembly language,"

IEEE Technical Applications Conference. Northcon/96. Conference

Record, Seattle, WA, USA, 1996, pp. 456-458. doi:

10.1109/NORTHC.1996.564981

19. Lomont, C., “Introduction to Intel Advanced Vector Extensions,” 2011.

20. Mckee, S.A. and Weaver, V.M., “Code Density Concerns for New

Architectures,” in Computer Design, 2009. ICCD 2009. IEEE

International Conf., Lake Tahoe, CA, 2009, pp. 459-464.

21. Kleir, R.L. and Ramamoorthy, C.V., “Optimization Strategies for

Microprograms,” in Computers, IEEE Transactions, 1971 Volume:

C-20, Issue: 7, pp. 783-794.

22. O. Lempel, A. Peleg and U. Weiser, "Intel's MMX/sup TM/

technology-a new instruction set extension," Proceedings IEEE

COMPCON 97. Digest of Papers, San Jose, CA, USA, 1997, pp.

255-259. doi: 10.1109/CMPCON.1997.584723

23. M. Lingling, Q. Xiaojie, Z. Zhihong, Z. Gang and X. Ying, "An

Assessment Tool for Assembly Language Programming," 2008

International Conference on Computer Science and Software

Engineering, Hubei, 2008, pp. 882-884. doi: 10.1109/CSSE.2008.111

24. Steven Holzner and Peter Norton Computing, Inc., "Advanced

Assembly Language". New York, NY, 1991.

25. NASM Development Team (2015) "The Netwide Assembler: NASM"

[Online]. Available: http://www.nasm.us/doc/nasmdoc1.html

26. B. Blaha and D. Wunsch, "Evolutionary programming to optimize an

assembly program," Proceedings of the 2002 Congress on Evolutionary

Computation. CEC'02 (Cat. No.02TH8600), Honolulu, HI, USA, 2002,

pp. 1901-1903 vol.2. doi: 10.1109/CEC.2002.1004533

27. Imagination Technologies, Inc. "MIPS Architecture for Programmers

Volume I-A: Introduction to MIPS64 Architecture rev.6.01". Sunnyvale:

Imagination Technologies Inc., 2014

28. D. Fujiwara, N. Ishiura, R. Sakai, R. Aoki and T. Ogawara, "Reverse

Engineering from Mainframe Assembly to C Codes in Legacy

Migration," 2016 5th IIAI International Congress on Advanced Applied

Informatics (IIAI-AAI), Kumamoto, 2016, pp. 1058-1063. doi:

10.1109/IIAI-AAI.2016.37

29. Intel Corporation. "Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 2". Intel Corporation, 2015"

30. Kusswurm, D. "Modern x86 Assembly Language Programming",

CreateSpace Independent Publishing Platform, 13 Jul 2017

AUTHORS PROFILE

Jonathan Paul C. Cempron. A Graduate of BS Computer Science

major in Computer Systems Engineering in De La Salle Unversity. Research

focus on Computer Architecture and Computer Vision.

Chudrack Shalym Y. Salinas. A Graduate of BS Computer Science

major in Computer Systems Engineering in De La Salle Unversity. Research

focus on Computer Architecture.

Roger Luis Uy. Assistant Professor, Computer Technology Department,

College of Computer Studies, De La Salle University, Manila Philippines.

Research interest includes applying concepts of Computer Architecture to

other interdisciplinary fields such as Bioinformatics.

