
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

561

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019



Abstract: Software testing is a major phase that takes place

under the construction of software designing. Basically, testing

is a process that assists in the determination of work that it

reached to the desired output or not. It generally depends on the

validation and verification procedure, whereas in simple terms a

software testing process is to discover the bugs, errors, faults of

the developed software and manage it. It is also considered as the

risk based activity. The testing criterion is different at each level

and it is completed in various steps. The life cycle of software

testing is composed of various steps as the feasibility study, data

gathering and specification, design or framework, unit testing,

integration and system testing. At last the maintenance is

occurring to finalize the software application. In software

engineering several kinds of testing strategies are utilized as

black box, white box, regression testing, static, dynamic and so

on. There are enormous advantages of software testing. The

common advantages are to investigate software quality, access

the huge pool for verification, deducted the construction cost,

improve the reusability, aimed at the basic competencies,

increase the demand of the product, balance the time period for

the development of software and boost the competitiveness. But

there are also certain vulnerabilities related to the large

investments, software tools, training, need of more manpower,

most time consuming of test preparations, need of more testing

space, hidden errors impact on the entire code and cost. In the

proposed work, the performance is reliant on the better way. Test

case generation is a procedure to generate software

corresponding various test case generations and validate various

test cases. So that research work identifies the quality of

software. This process also declined the maintenance cost (MC)

of a software system. In the proposed architecture design,

Multi-stage Genetic algorithm has various benefits as it is

highly effective in higher dimensional spaces, more memory

efficient and versatile. Basically, Multi-stage GA is applied in

several real-time applications as in the text categorization,

classification of test cases and regression related issues. In the

research work, mutants compare various existing techniques

and performance parameters are like as mutants, accuracy rate,

time consumption and number of events. The planned approach

is best in terms to enhance the accuracy rate and achieved it in a

reduced time period. Several techniques are used to compare the

number of events fire. So that, the architecture accuracy rate has

achieved this based on the number of events. The multistage GA

test case is an intelligent approach and supportive to various

languages like .Net, Java, C++ and Project Management used in

an automatic test case. It helps to improve the quality of software

Revised Manuscript Received on September 25, 2019

Anju Bala, Department of Computer Science and Applications, Maharishi

Dayanand University, Rohtak; Email: anjunarwal024@gmail.com

Rajender Singh Chhillar, Department of Computer Science and

Applications Maharishi Dayanand University, Rohtak; Email:

Chillar02@gmail.com

and based on the mutants. Basically, mutants are like failure

(Some time it is passed or sometimes it fails). The reduced

number of mutants increased the software quality.

Index Terms: SDLC (Software Development Life Cycle),

OOPS (Object Oriented Programming System), GA (Genetic

Algorithm), PSO (Particle Swarm Optimization), ACO (Ant

Colony Optimization), BCO (Bee Colony Optimization.

I. INTRODUCTION

 Testing has been acknowledged as a vital section of the

(SDP) software development process. ST (Software testing)

is a significant SQA(software quality assurance) event to

confirm that the advantages of OOP(object oriented

programming) will be appreciated [1]. Testing is a procedure

that checks out the correctness and dynamic behavior of a

program at the time of its execution. The main purpose of

testing to ensure the program meets its desired requirements

[2]. It is a most beneficial phases in SDP(Software

Development Process). Its make certain that the

implemented software fulfills all user requirements and

execute with-out error. Software development paradigm and

methods have moved from start water-fall SD to object

oriented design and some other novel concept. Software

testing has also moved from CT (Conventional Testing)

towards OOT (Object Orientation Testing) [3]. Software

testing is basically a collaboration of three Ps which means,

of the phases, processes and principles of software testing.

Three Ps are described as phases of testing, the process of

testing and principals of testing [4]. Software testing

classified into two forms as static and dynamic testing. The

static testing consists of inspection of code, program and

model verification. On the other side, dynamic testing

processed takes input and performs the test processes and

generates the automatic testing [5]. Unit testing means test

each operating as a part of a class hierarchy. It is different

from conventional testing. In conventional testing, the main

focus is on Input-process-output. But in class testing focuses

on each method. Validation testing checked that is we

building the right product? Validation becomes succeeds

when software function in a manner that can be reasonably

expected by the customer. Validation testing is focused on the

user visible action and recognizable output. Integration

testing is the testing of the interaction between object

oriented components.

Integration testing assumes

that unit testing has been done

Automatic Test Cases Generation using

Multistage-Based Genetic Algorithm for Object

Oriented Testing

Anju Bala, Rajender Singh Chhillar

Automatic Test Cases Generation using Multistage-Based Genetic Algorithm for Object Oriented Testing

562

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

on the components and that the defects have been removed.

System testing concerned with the execution of test cases to

evaluate the whole system with respect to the user’s

requirement. System test checks for unexpected interaction

between the units and also evaluate the system for

compliance with functional requirements [6], [7], [29], [30].

There are countless testing categories. The advantages of

software testing are cabled to detect faults and errors in the

software development, identify the bugs, generates highly

accurate results and efficiency, it also performed root cause

analysis, create defect reports and improved them, clearly

identified the requirements, expelled the texture execution

time and flourished the values and so on [8].

A. Materials and Methods in Software Development Life

Cycle

The process of software known as software life cycle that

obtained the structure of software products. The processes are

same as life to software so it named life cycle. It consists of

the development of software and maintenance of software

products. [9]. SDLC is well organized structure and a

sequence of numerous steps in the software engineering to

create powerful software [10]. It involves certain steps that

are data collection, feasibility study, analysis, software

framework, coding, testing, implementation and

maintenance. There are various software development life

cycles that are discussed in the following section.

Waterfall Model: This model is a classical model used in

the software development life-cycle. Waterfall model was

exposed by Royce in 1970 and after that defined by Boehme

in mid of 1970’s. The main focus is to specify the

requirements of a system before software designing, it

collaborates the components to interact with each other, and

it tracks the progress in the development of software [11] ,

[31]. A waterfall is the older model which consists of

overlapping steps. It played out a basic platform for various

other models.

The main characteristics of Waterfall Model: In

software development life cycle, waterfall model introduced

numerous characteristics such as Understanding and

implementation is easier rather than other models, it is the

oldest model so known as global, support to weak teams, the

performance is much better on mature software products,

cost-effective, consists of the basic steps which further used

by other models [9] , [32].

Figure 1. Classical Waterfall Model

Iterative waterfall model: Iterative model is sometimes

called increment process model. It is an enhanced version of

the waterfall model. In this model no confusion about the

final product which can be delivered in phases as the

requirements. The number of cycles is performed and the

product displayed in front of the customer to get the feedback.

If the developed software, selected by the customer then

delivered otherwise it is modified again. The increment

process model contains similar phases as the waterfall model.

The steps in the increment waterfall model are related to

waterfall model. The only difference is seen in the variety of

iterations. The process of developing software is associated

with different the alterations. A final product generated at the

end of the iteration. This is the biggest feature of the iterative

model. Features of Iterative Waterfall Model are the entire

projects partitioned into small parts, valuable feedbacks,

feedbacks of one phase become the input to another phase,

worked well even in the lack of many staff, easy

implementation [9], [12], [33].

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

563

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

Figure 2. Iterative Waterfall Model

Prototype Model: Prototype model plays out a crucial role

in SDLC and it is a model based on the extension of an

incremental or iterative model. In this model, a number of

prototypes inclined. The initial prototype assessed by the

customers that involved well-defined documentation.

Further, this prototype generates an overall architecture to

software. Addition to this, the software product development

through prototype model is nearest to the customer

requirements [13]. Features of evolutionary or prototype

model-collect user ideas and requirements, highly accurate

results, feedback collection in the beginning stages, early

design, coding and analysis, software success rate is

extremely good.

Spiral Model: The spiral model is known from several

years ago and it is an improvement and refinement of

classical waterfall model mainly referred to in the huge

government software. In each cycle, a prototype created to

verify the needs and validation for testing. In case the risks

are alleviated , then it moved to iterative waterfall model

otherwise, again identified in the spiral model to alleviate the

risks. Advantages of spiral model- each cycle is complete and

performs better iterations rather than any other model select

the mixed approaches to find out errors and risks,

measurements of time and effort which assist in risk

management, verification and for testing, a review of all

cycles [14].

B. Soft Computing

Soft computing associated with the combination of various

approaches that are capable to sort out the major issues in a

computing process. These approaches are linked to fuzzy

logics, probabilistic reasoning, neural networks and mainly

the genetic approach. All these approaches are generating a

search and find out techniques that can effortlessly deal with

the complexity and real-time problems [15]. Soft computing

(SC) is a critical concept which referred to a considerable

speculation, mainly spotlight on the computing procedure

that easily reflects the hidden details of the human brain.

There are a variety of applications of soft computing. The

major fields of SC are handwriting recognition, compression

and image processing, automatic systems, frameworks of SC,

decision support systems, Neuro fuzzy, fuzzy logic control

systems, speech and visual recognition, machine learning

applications, process control and many other fields [16].

Genetic Algorithm: In the mid of 1970’s Holland

proposed an algorithm, namely genetic algorithm that

performed a random search in a particular solution space.

The solutions are considered as chromosomes and

determined through the fitness function [15].Operators in

GA are described as below-

- Enoding: The process of representing the solution in the

form of a string that conveys the necessary information

- Fitness function: A fitness function quantifies the

optimality of a solution so that particular solution may

be ranked against all other solution [17].

- Recombination: The process that determines which

solution is to be preserved and allowed to reproduce and

which ones deserve to discard.

- Cross Over: It is the process in which two chromosomes

(strings) combine their genetic material (bits) to

produce a new offspring which possesses both their

characteristics.

- Mutation: it is the process by which a string is

deliberately changed so as to maintain diversity in the

population set.

Pseudo Code for Simple Genetic Algorithm

Int Time

IT := 0;

INTIATE PPLN R (IT); // initialize a rand

population of Chromosomes.

Calculate fitness value; // entire chromosomes

in a given population.

Cal R (IT);

Testing

For Stop Criteria; // it includes Time taken

and Fitness Value.

While

{

 Do pending operations

}

Increment of Time

IT = IT + 1;

Select

Automatic Test Cases Generation using Multistage-Based Genetic Algorithm for Object Oriented Testing

564

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

Sub PPPLN

R 0 := Choose parents G (IT);

Add genes,

Repeat process of addition

REP G 0 (IT);

Operators // applying certain operators.

Mutation

G 0 (IT);

Cal new Fit Value

Determine G 0 (IT);

Choose actual fit value P

Terminate GA.

TABLE 1: COMPARISON OF VARIOUS TECHNIQUES

Technique Used Description Advantages Applications

Genetic algorithm It is an algorithm which based on

three basic operators, as selection,

crossover and mutation search

fitness value of a problem.

Solve NP hard

problems

Easy implementation

Solve complex

problems as traveling

salesman problem

Health care systems

Face recognition

Iris recognition

Ant colony optimization ACO approached to solve large

population search space. It’s based

on the natural phenomena of real

ants the searching for food. Ant

colony optimization is dissimilar

from other algorithms. It followed

up to create all new set of solutions

rather than modifying the existing

solution. [18].

Easily balance

pheromones

Find out neighborhood

solutions

 Generate reinforce

and easily evaporate

pheromones.

Searching for

neighborhood

solutions.

Quardric assignments

Routing of vehicles

Telecommunication

Bee colony optimization BCO is a meta heuristic technique

that based on the habits of bees.

For processing like real bees it

introduced artificial bees as

agents. The searching way of BCO

is moving in the terms of iterations

till reached at the desired terminal

criteria. In this process each and

every bee consisting of a solution

for the given problem [19]

It supports to

variations.

Easily search optimal

flights and Parallel

processing, capable to

search optimal flight

assignment.

BCO utilized to sort out

the combinatorial

problems.

NP Hard problems

Engineering fields

Find a solution of

Complex lengthy

problems

Particle swarm optimization PSO is a sub-category of swarm

intelligence and an evolutionary

technique. PSO does not require

any kind of selection operator as

compared to the genetic

algorithm. Entire particles are

saved in the form of members of a

population by run. According to

researchers, the run is all about the

number of evolutionary techniques

that consist priority to stop [20].

Easy execution of PSO

Parameters are flexible

so they can fit

according to the

requirements.

Robust process.

Max- min problems

Multiobjective

problems.

Dynamic tracking.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

565

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

II. BACKGROUND

In business and industrial works, software played out a

pivotal role and is an internal area of processing. The core

products of software are in banking, finance, healthcare,

social networking, shopping, and e-commerce. The

architecture of software product assists various things. For

instance, long time period, intellectuals, domain expertise

and software tools [26]. In each field, the project begins with

the internal development which performed successfully to

satisfy the customer needs. Sometimes the required functions

don’t work well that causes failures and faults in the system.

It is right to say about the software failure or faults could be

happening at any stage of software product development [27]

and [28].

A. Software Failure

Software failure is a concept of not performing tasks

properly, which generate errors in the deployment of

software. It can be any kind of software product or

applications that support the various applications in this

technological world. In an alternative way, a software system

is defined as a system of components that are interrelated.

The software is a group of a variety of programs, files,

documentation that are applied to make a structure of the

system. The occurrence of failure arrives when the delivery

services do not comply with specifications. This way of

failures is seen in both hardware and software [26].

FMEA (Failure Modes and Effect Analysis): software

failure mode and effect analysis is a systematic approach to

identify and alleviates the failures for enhancement of

reliability. Many years ago, it was used in the revealing of

ranks, military, critical functions and in missile systems. The

fundamental objectives of FMEA are as mentioned below:

i) Identification of single point failure

ii) Identify the redundancy area

iii) Verification of features that are required to eliminate.

iv) Identify testing for redundancy

v) For generating ranks and critical terms in the

software.

Major error categories in a software system are

computational, logical, data handling and interfaces [26].

B. Different Kinds of Software Failure

Software failures come under various ways which are as

follow:

i) Count of Users of Applications

ii) Monetary Transactions

iii) Slow Response of Server

iv) Performance of System

v) Downloading of papers is not well[26].

C. Causes of Software Failure

In the development of software systems, there are

assortments of factors that cause the failure in the software

development phase. The major factors that cause failures are

given below:

i. Unrealistic Project Goals: The system fails when there

are more unrealistic and unarticulated project goals

that are difficult to complete in a given time period.

Due to these conditions, the processing affected and

not reached the target.

ii. Inaccurate Estimates of Resources: Another factor

that causes faults and errors in a system is seen in the

access of right resources. The estimation of resources

is crucial to the good deployment of a software system.

iii. System Requirements: The requirements are a

necessity in the well-organized process of software. In

case of bad requirements, the system fails.

D. Case Studies

Case Study 1: In Oxford health plans company. A failure

occurred due to the newly invented billing system could not

expand the business and produced faults related to

un-collected payments around four hundred million from

patients and one hundred and fifty million more from the

caregivers.

Loss: In late 1990’s the quarterly loss, prompt stock

amount fell drastically from 68 dollars to 26 dollars just in

one day. Afterward, the company was forced to pay 225

million dollars to settle lawsuits.

Case Study 2: Sydney Water Crop. A failure introduced in

a project which referred for automatic customer information

and billing, particularly for Australia’s extreme water

providers was abandoned in 2000. This abandon was allied to

insufficient planning, a majority of change requests and cost.

The total cost spent on this project was around 33 million

dollars.

Case Study 3: London Stock Exchange. In 1993, efforts to

design a new stock settlement system were scrapped. Later,

the complexity and design along with poor management

become causes of failures and it costs around 600 million

dollars [28].

Case Study 4: ERP Project Failure in Jordan. The failures

were generated through gaps between predictions and needs

required to build on the ERP system framework along the

realities of client organizations. The extremely loss of

Capital and clients were un-satisfaction.

Case Study 5: This case study was related to software

Ariane 5. It was a European newly rocket which was

dramatically expelled after just seconds of launch in its flight.

Along with this, another four cargoes of scientific satellites

were also diminished. The loss was around 100 million

dollars and the reputation of ESA (European space agency)

was declined.

Case Study 6: Therac-25 was a Canadian cancer therapy

machine developed by AECL (Atomic energy of Canada Ltd.)

in the mid of 1980’s. It was a software control radiation

therapy to treat cancer patients. During 1985 and 1987,

therac-25 give overdoses of radiations to six patients. Experts

said these were given because of no dose mentioned in the

system. It indecently selects the number of doses. The results

show several injuries and three

deaths of patients[24].

Automatic Test Cases Generation using Multistage-Based Genetic Algorithm for Object Oriented Testing

566

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

III. LITERATURE SURVEY

Jamil, M. A., [21] give a brief description of some software

testing approaches. Due to the enhancement of software

applications, the testing procedure was required to increment

the quality of assurance. Software testing was a pivotal phase

in the software development life cycle. This paper includes

various terms related to software testing, which was testing

methodologies, the life cycle of Software, Test optimization

and quality metrics. Various techniques of software testing

were introduced as follows:-

- Control flow testing

- Branch testing

- Matrix testing

- Pattern testing

- All pair testing

All these mentioned testing was deeply described and

there was an enhancement of existing techniques, mainly to

improve the quality assurance purposes [22]. Research on a

brief description of software testing, which aimed at white

box and black box testing particularly in C and C++

programs. Verification activities performed through the

software development were explained as well.

From a few decades ago, the requirements of software were

not much essential, but in this fast-moving world, the

internet and the demand of the software increased

continuously. Software development introduced for

obtaining the solutions to real-life problems. For this work,

several testing's and evolution was required for the software.

Software testing was a process or a solution that checks out

the performance of a program and system function correctly

or not. Various verification activities were performed in the

life cycle of software development which includes-

- Requirement Analysis

- Architecture

- Implementation

- Operations and Maintenance

In the other sections of the research paper, there were C

and C++ programs with the use of the white box, black box

testing was described. The traditional method applied to

catch the faults in the program was faced with some

limitations. To overcome these problems, white and black

box testing techniques were used which was fully automatic.

White box testing was called static testing that applied to

software, whereas black box testing considered as dynamic

testing that checked the errors on the basis of input and

output. From the researched survey, it was clear that white

box was performed with the conjunction of black box testing

[23]. initiated research on information visualization and

sequencing constraints with low-level interactions. Black

box testing was in use for visualization. The main motive of

this research was to develop the test approaches for

visualizing and generate the rigorous evaluation of

visualization [35].

Verification and verification were a procedure which was

applied in the software development to check out the

specifications and desired purpose fulfilled or not. This

procedure includes the selection of elements, function input

domain, the execution of the program. Finally, it compares

the obtained output with the target output. This verification

and validation procedure called software testing as well.

There were two kinds of testing.

- White Box Testing

- Black Box Testing

This method was fully dependent upon constraints on the

low-level interactions, which were used in visualization. The

results give information about the testing of visualization

requirements fulfilled with the use of black box testing. After

that runtime verification was also checked throughout the

black box testing [24]. Proposed a comparison between black

box and white box test prioritization. Regression testing,

white box and black box testing were main key terms. An

experiment was done on various test prioritization

techniques. At the end of this paper, there was an evidence of

black and white box prioritization which was reliable and

robust.

Regression testing suites were essential in terms of testing

mainly for the effectiveness and robustness of faults or errors

in the testing procedure. Several kinds of the testing had been

proposed in this paper. However white box prioritization was

well described, but black box testing wasn’t compared with

any other testing approach. It was applied for generating

diversity in the testing techniques. Due to the less

information about the black box test prioritization, it was

hard to estimate its working procedure.

The experiments were examined the extreme overlap

between the errors or faults found in the white box and black

box test prioritization. More than that, the comparison

between the performances of various testing techniques was

evaluated. From the existing work, the initial testing was

reliable at multiple releases. However, these new findings of

black and white box testing where must give positive results

in regression testing [25]. researched on the model-based

method in software testing. To make the productivity and

quality assurance more desirable, it required to detect faults

in the initial stages of architectural design in the system.

These entire requirements were necessary for the streams

that need to escalate reliability of automotive companies,

fabrication, Embedded software testing [34].

A model-based approach implemented to enhance the

software testing. Other testing approaches were added to it

for more enhancements. For instance:

- Unified Modeling Language

- Integration Testing

- Power Window Switch Module

- Approval Testing

- Hardware Testing.

All these entire approaches are working together in the

model-based approach. All the specific languages were used

as the input data, it evaluates the required values. Next, to it,

unit cases were collaborated along with integration testing

that works towards the bottom-up method and further altered

it to the hardware testing.The outcome generated through

model-based approach was just

demanded few resources for

originating software to hardware.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

567

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

TABLE 2. LITERATURE SURVEY OF PREVIOUS TECHNIQUES

Author’s name Year Technique Used Parameters Issues

Jamil, M. A., et al., 2016 SDLC (Software development life cycle),

automation testing, quality metrics and test

driven,

- Cost and time

consumption

Nouman, M., et al., 2016 Black box and white box testing - Safety critical

domains

Larrea, M. L. 2017 Black box technique, user action notation and

sequencing constraints.

Details on demand

Test cases

Visualization

implementatio

n

Henard, C., et al., 2016 Test prioritization of black and white and

regression testing

Fault detection rate,

faults, test suites,

prioritization

The

comparison

was not earlier

done.

Shin, K. W., et al., 2018 Model based approach with X query and

hardware mapping

Automatic testing Dependency on

sources.

IV. DESIGN A MULTI-STAGE GENETIC ALGORITHM

(MS-GA)

The description of the research and the results are as

follows-

- Load all classes: after start users need to upload their

codes on the server to generate test cases. Here the system

loads all the libraries and classes developed by the

developers in the memory and transfers control to the

next step for further processing.

- Find Methods and arguments: in the whole processing

architecture, the overall processing depends upon the

classes and their methods written by the developers. Due

to various modules and sub-modules in the software

systems, a team working together to produce high-quality

software systems. This process makes various issues due

to the skill and experience differences. The test case

generation process validates the deployment process and

provides a high-quality software system. Finding

methods and argument process is used to extract various

code modules from log files to generate various tests and

validations.

- Test cases: Test case generation process used to validate

the modules and find the mutants from while integration

process. The developers develop codes and load all code

files on the common FTP and then integrate with the

existing system. Before it will integrate it needs to

validate with a different branch or with other sub-module.

Various test cases are used to check the different

conditions and various rules satisfactions according to the

application and OOPs criteria. Various mutants found by

the system will issue as tickets to resolve from the

back-end.

- Processed: due to various sub-modules in every

software system, the test case generation process uses

some iterative processes to process all the modules and

sub-modules. This process handles module by module to

form tree architecture for all the functions and

sub-functions to process them in the right manner.

- Optimization process: the optimization process in this

phase plays an important role to process the modules and

generate test cases. Here the process generates various

possible solutions for a module and executes them on the

given code architecture. While execution, it optimizes the

values of various input-output arguments according to the

OOPS rules to generate the test cases and mutant from the

large software system.

Automatic Test Cases Generation using Multistage-Based Genetic Algorithm for Object Oriented Testing

568

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

Figure 3. Proposed Flow Diagram

- Evaluate parameters: Various parameter mutation

score, accuracy, time etc. are used to evaluate perform of

the proposed architecture. So at the end of the execution

this process is used to find the various parameters to

check the performance factor and design a comparison

with other existing approaches to performance

validations.

- Stop: This process is used to refresh the memory block

to create free memory slots and generate the process for

further execution.

Various other sub-modules of the optimization process are

listed below:-

Step 1: Random Uniformly distribution (Start over the

search space). External Memory is an integer valued

chromosome (1,0) encoding with direct representation.

Step 2: Assign the fitness function, requiring the number

of symmetric coefficients to be optimized for the linear

phase, even nth order selected. Manage the upper and lower

values of the undefined values as positive 1 and negative 1

respectively.

Step 3: Set the PZ (population size) as 200. Choose a set

random solution set of chromosome strings in test cases, with

each character consisting of an asset of high selected values.

Step 4: Initialize uniform, select multi-phase operator for

random parent selection.

Step 5: Mentioned the best solution at 2, they're being of

the next generation and high the error fitness values from

fewer values.

Step 6: Crossover and Mutation operators are applied

between binary chromosomes to produce off-strings and to

prevent redundancy in the resp.

Step 7: generate the test cases by changing the mutation

states using different threshold values and perform the

change of states in the optimization to evaluate the best

appropriate output for the generation to achieve appropriate

results.

Step 8: Multistage GA process has been updated. FFn

(Fitness Function) is calculated for each data and Less fitval

are un-expended at each iteration.

Step 9: Process terminated with the success of fitness or if

the high number of generations that is 200 extended earlier.

Exit

Proposed Algorithm in MS-GOA (Multi-Stage Genetic

Optimization Algorithm) to solve the travelling salesman

problem:-

Initialize the population

Begin with the nearest neighbor heuristics.

 For each individual;

Do Johan kabobs (Optional data) individual;

Repeat process

Apply for j=0 to cross over

Then do

Choose two random individuals;

Crossover (Text_cases-

chromosomes range divide).

Do Johan kabobs (Optional)-

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

569

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

(Child….i.e sub class, methods and arguments);

For predefined probability (based on Failure and pass)

Do mutation (Child); i.e, Mutants (recover the extra

spaces and Time).

Shuffle an individual in the population;

End;

Until converged;

Stop;

V. RESULT AND DISCUSSIONS

In this section is having various results and simulation

graphs, processing phases of the test case generation process,

and comparisons with various existing algorithms. Here

some tabular results of various open source software are used

to test the proposed processing architecture and validate their

processing and results on all the points. In overall discussion

in this section also describe the better performance of test

case generation algorithms in terms of accuracy, mutants

findings and time consumptions with various test cases.

Table 4. Comparison proposed and existing work in Performance metrics – Accuracy Rate (%)
Project MGA GA BFO ACO

Banking Software 97.59 90.36 76.15 81.352

Books Management system 98.314 90.138 73.48 86.145

College canteen_System 97.332 90.731 73.135 83.254

Management system_Computer 97.558 92.394 76.95 85.145

Diabetes_checking_system 99.665 92.62 75.158 84.25

Hotel_Management_System 98.234 92.335 75.158 81.95

LIC_Managements 98.48 92.548 76.552 81.63

Calculation system 98.668 92.145 74.62 84.36

Dictionary_System 99.237 93.885 77.522 85.66

Reserve Tickets_railways 99.35 93.5 70.158 85.24

School_management 98.265 90.54 73.65 87.214

Shuffling_game 97.7 91.88 74.35 81.36

Snake_Game 97.63 93.22 74.214 81.79

Student_Management_System 99.575 93.864 77.95 84.635

Banking_system 99.14 90.913 74.012 87.46

Gaming_system 98.782 90.46 75.28 85.69

Exam_Management 98.99 93.53 75.996 85.21

Job_portal 99.752 93.82 76.42 85.46

Library_system 99.394 98.71 77.25 85.63

Routing_protocol 99.934 98.659 74.25 87.12

Help_Desk 98.964 92.46 76.235 87.197

Various test cases are generated and recorded in this

section for validation of accuracy factor. Here some open

source development software codes are collected as dataset

and upload in the test case generation system. After

processing all this code the system provides accurate factor

for the generation one by one. The overall performance of the

proposed MGA algorithm as compare to other optimization

techniques is better and give better accuracy factor in all the

cases.

Figure 4. Comparison – Accuracy Rate (%)

Automatic Test Cases Generation using Multistage-Based Genetic Algorithm for Object Oriented Testing

570

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

As in the table format various test cases are generated on

different software systems. All the systems are having their

own calculations in the test case generation system with

MGA. Here the graphical presentation in a bar chart is

shown as a comparison of all the test cases in terms of

accuracy factor. The high accuracy shows better results in

this system. As in the bar graph, the performance of proposed

architecture shows better results than the all other existing

approaches. The highest accuracy of the proposed approach

crossed 99% for some of the cases.

Table 5: Comparison Between Proposed and existing work in Mutants

Project MGA GA BFO ACO

banking Software 27 17 12 14

Books Management system 31 18 13 17

College canteen_System 35 21 13 16

Management system_Computer 33 19 12 14

Diabetes_checking_system 41 20 14 13

Hotel_Management_System 45 17 15 17

LIC_Managements 45 16 17 18

Calculation system 42 20 11 15

Dictionary_System 41 19 12 12

Reserve Tickets_railways 41 19 14 15

School_management 27 17 13 14

Shuffling_game 27 19 17 16

Snake_Game 42 18 16 14

Student_Management_System 41 20 14 16

Banking_system 34 20 12 18

Gaming_system 38 20 14 17

Exam_Management 38 20 13 14

Job_portal 34 19 14 15

Library_system 36 19 13 12

Routing_protocol 28 18 14 15

Help_Desk 41 19 15 16

Mutants are some of the cases which are not passed due to

some reasons or development standard. All the mutants

degrade the performance of software systems and increase

maintenance cost of the developed software system. To

reduce the risk of all these things test case generation process

takes place. Here in the table performance of MGA is better

in all the cases as compare to the other algorithms. The

highly accurate system MGA finds mutant accurately more

than other existing optimization approaches.

Figure 5. Comparison – Mutant

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

571

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

The figure plots show detected mutants while generating

test cases toward various software systems. As the proposed

approach MGA perform highly accurate detection for test

case generation, so it finds a number of mutants more than

other existing approaches. The other existing approach

having less accuracy, so that they aren’t able to detect the

failures occurred in the test case generation process.

Table 6. Comparison between proposed and existing work using - Time Consumption (Ms)

Project MGA GA BFO ACO

banking Software 52 102 85 90

Books Management system 67 94 87 91

College canteen_System 61 97 84 97

Management

system_Computer

62 93 83 95

Diabetes_checking_system 61 99 87 96

Hotel_Management_System 64 102 87 94

LIC_Managements 68 101 89 95

Calculation system 71 94 82 98

Dictionary_System 72 108 89 97

Reserve Tickets_railways 77 107 91 92

School_management 53 107 90 90

Shuffling_game 73 88 84 89

Snake_Game 74 94 86 91

Student_Management_System 55 93 84 94

Banking_system 52 96 87 96

Gaming_system 58 108 89 90

Exam_Management 64 107 94 92

Job_portal 61 107 99 94

Library_system 58 102 98 92

Routing_protocol 52 95 92 98

Help_Desk 74 97 96 97

The most important part of the software testing is time

consuming. The algorithm performs calculated with the help

of various parameters like accuracy, error rates, detected

mutants, etc. For all the factors time consumption is the most

important parameter. Less time taking process is very

responsive to the end user to all their queries. Here the test

case generation the time consumption of MGA is less as

compare to all other existing algorithms. It shows fast

processing of uploaded coding modules and provide optimal

results in a very short time span.

As in the plotted graph the time consumption of the

proposed approach is less as compare to all other existing

algorithms. This parameter shows fast processing speed of

uploaded code modules and generation of test cases toward

them. This parameter helps to process large code modules in

less time span and generate highly accurate results

corresponding to them.

Automatic Test Cases Generation using Multistage-Based Genetic Algorithm for Object Oriented Testing

572

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

Figure 6. Comparison –Time

VI. CONCLUSIONS

The main objective of the research work is depends upon

the test cases of object oriented software automatically. There

is also an explanation about the applications of evolutionary

approaches as genetic algorithm, bacteria foraging

optimization algorithm (BFOA) and ant colony optimization

(ACO). The research work followed the intelligent approach

of multistage Genetic that worked for the huge scale

developments of software designs. The entire research work

is represented the information in different sections. Software

testing is a vital software quality activity to ensure that the

benefits of OOPs will be realized. The main objective of

software testing is to uncover the as much error as possible

with the minimum cost and efforts. A conventional testing

process takes place mostly when waterfall life cycle is used

for software development at the organization. Nowadays, to

overcome the problem which is occurring in conventional

testing, object orientation has rapidly become accepted as the

preferred paradigm for large scale system design. Object

oriented (OO) analysis and design along with agile and other

recent software development methodologies leads to object

oriented testing. Summarize the software, computing, which

includes its classification, the genetic algorithm, BFOA,

ACO BCO, PSO, pseudocode, flowcharts and further a

comparison analysis of test suite prioritization approaches.

In the proposed work, the performance is reliant on the better

way. Test case generation is a procedure to generate software

corresponding various test case generations and validate

various test cases. So that research work identifies the quality

of software. This process also declined the maintenance cost

(MC) of a software system. In the proposed architecture

design, Multi-stage GA (Genetic Algorithm) has various

benefits as it is highly effective in higher dimensional spaces,

more memory efficient and versatile. Basically, Multi-stage

GA is applied in several real-time applications as in the text

categorization, classification of test cases and regression

related issues. In the proposed approach, mutants compare

various existing techniques and performance parameters are

like as mutants, accuracy rate, time consumption and number

of events. The planned approach is best in terms to enhance

the accuracy rate and achieved it in a reduced time period.

Several techniques are used to compare the number of events

fire. So that, the architecture accuracy rate has achieved this

based on the number of events. The Multistage GA test case

is an intelligent approach and supportive to various

languages like .Net, Java, C++ and Project Management used

in an automatic test case. It helps to improve the quality of

software and based on the mutants. Basically, mutants are

like failure (Some time it is passed or sometimes it fails). The

reduced number of mutants increased the software quality.

Future study contains using huge training sets to get better

consequences for our proposed approach and also use other

benchmark executes for comparing the consequences.

The upcoming work will consider following areas:-

Build a highly effective search path. Because MSGA

method is an easy algorithm. It generating effective GA

operators find path could significantly enhance test case

coverage area and minimize the num_of_iterations.

REFERENCES

1. Binder, R. V. (1994). Testing object-oriented systems: a status report.

American Programmer.

2. Kapfhammer, G. M. (2004). Software testing. In In The Computer

ScienceHandbook.

3. Ivar, J., Magnus, C., Patrik, J., & Gunnar, O. (1992). Object-oriented

software engineering, a use case driven approach. MA.: Addis

4. Dalal, S., & Chhillar, R. S. (2012). Software Testing-Three P'S Paradigm

and Limitations. International Journal of Computer Applications, 54(12).

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019

573

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10990982S1019/2019©BEIESP

DOI:10.35940/ijrte.B1099.0982S1019

5. Luo, L. (2001). Software testing techniques. Institute for software research

international Carnegie mellon university Pittsburgh, PA, 15232(1-19), 19.

6. Blaha, M. (2005). Object-Oriented Modeling and Design with UML: For

VTU, 2/e. Pearson Education India.

7. Jalote, P. (2012). An integrated approach to software engineering. Springer

Science & Business Media.

8. www.selfgrowth.com/articles/top-10-benefits-of-software-testing)

9. Malik, S., & Nigam, C. (2017). A Comparative study of Different types of

Models in Software Development Life Cycle.

10. Pohl, K. (2010). Requirements engineering: fundamentals, principles, and

techniques. Springer Publishing Company, Incorporated.

11. Davis, A. M., Bersoff, E. H., & Comer, E. R. (1988). A strategy for

comparing alternative software development life cycle models. IEEE

Transactions on software Engineering, 14(10), 1453-1461.

12. Malik, S., & Nigam, C. (2017). A Comparative study of Different types of

Models in Software Development Life Cycle.

13. Munassar, N. M. A., & Govardhan, A. (2010). A comparison between five

models of software engineering. IJCSI, 5, 95-101.

14. Ruparelia, N. B. (2010). Software development lifecycle models. ACM

SIGSOFT Software Engineering Notes, 35(3), 8-13.

15. Bonissone, P. P. (1997). Soft computing: the convergence of emerging

reasoning technologies. Soft computing, 1(1), 6-18.

16. Kurhe, A. B., et al., (2011). Soft Computing and its Applications.

BIOINFO Soft Computing, Volume 1, Issue 1.

17. Kim, M. Y., & Cheon, Y. (2008, April). A Fitness Function to Find

Feasible Sequences of Method Calls for Evolutionary Testing of

Object-Oriented Programs. In Software Testing, Verification, and

Validation, 2008 1st International Conference on (pp. 537-540). IEEE.

18. Liang, Y. C., & Smith, A. E. (2004). An ant colony optimization algorithm

for the redundancy allocation problem (RAP). IEEE Transactions on

reliability, 53(3), 417-423.

19. Davidović, T., Teodorović, D., & Šelmić, M. (2015). Bee colony

optimization-Part I: The algorithm overview. Yugoslav Journal of

Operations Research, 25(1), 33-56.

20. Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm

optimization. In Evolutionary computation, 1999. CEC 99. Proceedings of

the 1999 congress on (Vol. 3, pp. 1945-1950). IEEE.

21. Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016,

November). Software Testing Techniques: A Literature Review. In

Information and Communication Technology for The Muslim World

(ICT4M), 2016 6th International Conference on (pp. 177-182). IEEE.

22. Nouman, M., Pervez, U., Hasan, O., & Saghar, K. (2016, May). Software

testing: A survey and tutorial on white and black-box testing of C/C++

programs. In Region 10 Symposium (TENSYMP), 2016 IEEE (pp.

225-230). IEEE.

23. Larrea, M. L. (2017). Black-Box Testing Technique for Information

Visualization. Sequencing Constraints with Low-Level Interactions.

Journal of Computer Science & Technology, 17.

24. Henard, C., Papadakis, M., Harman, M., Jia, Y., & Le Traon, Y. (2016,

May). Comparing white-box and black-box test prioritization. In Software

Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on

(pp. 523-534). IEEE.

25. Shin, K. W., & Lim, D. J. (2018). Model-based automatic test case

generation for automotive embedded software testing. International

Journal of Automotive Technology, 19(1), 107-119.

26. Dalal, S., and Chhillar, R. S. (2012). Case studies of most common and

severe types of software system failure. International Journal of Advanced

Research in Computer Science and Software Engineering, 2(8).

27. Le Lann, G. (1997, March). An analysis of the Ariane 5 flight 501 failure-a

system engineering perspective. In Engineering of Computer-Based

Systems, 1997. Proceedings., International Conference and Workshop on

(pp. 339-346). IEEE.

28. Gray, J., and Siewiorek, D. P. (1991). High-availability computer systems.

Computer, 24(9), 39-48.

29. Rahideh M, Mazloum SZ. Combination System Optimization of Solar

Collector/ Photovoltaic with Genetic Algorithms. Medbiotech Journal.

2019;03(02):58-64.

30. Hosseini Naghavi AB, Alishah O, Gorji AM. Investigation of the Genetic

Diversity of Cultivars and Lines of Tetraploid Cottons by the use of

Quantitative Morphologic Properties of Fibers. Medbiotech Journal.

2019;03(02):65-9.

31. Amanlou M, Mostafavi SM. In sillico screening to aim computational

efficient inhibitors of caspase-9 by ligand-based pharmacophore

modeling. Medbiotech Journal. 2017;01(01):34-41.

32. Mostafavi SM, Bagherzadeh K, Amanlou M. A new attempt to introduce

efficient inhibitors for Caspas-9 according to structure-based

Pharmacophore Screening strategy and Molecular Dynamics

Simulations. Medbiotech Journal. 2017;01(01):1-8.

33. Salehi, S., & Mo'tadel, M. (2015). Model presentation to feasibility

measurement of knowledge management implementation with ANP

approach (case study of Post bank) . UCT Journal of Research in

Science, Engineering and Technology, 3(4), 17-23.

34. Freitas, M. D. C., & Mira da Silva, M. (2018). GDPR Compliance in

SMEs: There is much to be done. Journal of Information Systems

Engineering & Management, 3(4), 30.

35. Mendoza, D. J., & Mendoza, D. I. (2018). Information and

Communication Technologies as a Didactic Tool for the Construction of

Meaningful Learning in the Area of Mathematics. International

Electronic Journal of Mathematics Education, 13(3), 261-271.

https://doi.org/10.12973/iejme/3907

AUTHORS PROFILE

Anju Bala, Department of Computer Science and Applications

Maharishi Dayanand University, Rohtak; Email: anjunarwal024@gmail.com

sssssssssssRajender Singh Chhillar, Department of Computer Science and

Applications Maharishi Dayanand University, Rohtak; Email:

Chillar02@gmail.com

https://doi.org/10.12973/iejme/3907

