
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

768

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B11250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1125.0982S1119



Abstract Quality security requirements help secure software

development to succeed. While considerable research can be

discovered in the field of demands elicitation, less attention has

been paid to the writing of full security specifications. The

demands engineers (REs) are still challenged and tedious in

implementing and reporting full safety needs derived from

Natural language. This is due to their tendency to misunderstand

the real needs and the security terms used by inexperienced REs

leading to incomplete security requirements. Motivated from these

problems, we have developed a prototype tool, called

SecureMEReq to improve the writing of complete security

requirements. This tool provides four important key-features,

which are (1) extraction of template-based components from

client-stakeholders; (2) analysis of template-based density from

SRCLib; (3) analysis of requirements syntax density from SecLib;

and (4) analysis of completeness prioritization. To do this, we used

our pattern libraries: SecLib and SRCLib to support the

automation process of elicitation, especially in writing the security

requirements. Our evaluation results show that our prototype tool

is capable to facilitate the writing of complete security

requirements and useful in assisting the REs to elicit the security

requirements.

KEYWORDS: Tool security requirements, template-based

approach, security requirements completeness, template-based

density, syntax density.

I. INTRODUCTION

The most important aspect of requirements quality is

requirements completeness. Evidences show that one of the

root causes of safety incidents is due to incompleteness of

safety requirements . Incomplete requirements will interrupt

the reliability and accuracy of the prediction system. The lack

of requirement completeness causes uncertainty of the

project foundations . Research by shows that as many as 50%

of all accidents are due to requirements problems and many

of these accidents are caused by missing or incomplete

requirements.

Over the time, more and more software-intensive systems

have been given safety-related responsibilities. Considering

software safety is directly influenced by requirements

completeness, it is essential to have a complete requirements

so that the stakeholder’s needs are readily found and

Revised Version Manuscript Received on September 16, 2019.

Nuridawati Mustafa, Universiti Teknikal Malaysia Melaka, Hang Tuah

Jaya, Durian Tunggal, Melaka, Malaysia.
(email: nuridawati@utem.edu.my)

Massila Kamalrudin, Universiti Teknikal Malaysia Melaka, Hang Tuah

Jaya, Durian Tunggal, Melaka, Malaysia. Institute of Technology
Management and Enterpreneurship, Universiti Teknikal Malaysia Melaka,

Hang Tuah Jaya, Durian Tunggal, Melaka, Malaysia.

(email: massila@utem.edu.my)
Safiah Sidek, Institute of Technology Management and

Enterpreneurship, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya,

Durian Tunggal, Melaka, Malaysia.
(email: safiahsidek@utem.edu.my)

understood, and mistakes and misunderstandings are

avoided.

The incomplete requirements generate poor requirements

and lack of clarity. For that reason, it will contribute to

eliciting incomplete security requirements. Low clarity and

incomplete security requirements therefore lead to the

inability to create secure software. In addition, the issues with

the method of obtaining and compiling security

specifications are complex and tedious. In order for the

stakeholders to have consistent security demands, the

requirments engineer (RE) needs security expertise.

Furthermore, the specifications requirements are acquired

from natural language. This causes issues for REs to generate

stakeholder security demands because the actual needs and

the security conditions used are inappropriate to deal with.

The study in[5] shows that most clients refuse to understand

the security that their systems require. In addition, the

captured security requirements do not fulfilled the standards

requirements such as NIST, ISO and Common Criteria. All

these problems lead to the production of incomplete security

requirements.

This paper is organized as follows. After the introduction,

we discuss the related works in background and motivation in

Section 2. This is followed by Section 3, which we discuss

the overview of our proposed approach for security

requirements elicitation. Then, we discuss the tool usage

examples. Next, we present the results and discussion to

evaluate the effectiveness of our approach in Section 5.

Finally, we end this paper with conclusion and future works.

II. BACKGROUND AND MOTIVATIONS

Based on our investigation in Table 1, there are thirteen

current works done in writing security requirements with

nine different techniques contributions. Despite these efforts,

only four researchers developed the tools, but none were

found to provide with completeness validation. There

requirements engineers are still facing with incomplete

security requirements and none were found in security

requirements contexts, specifically on the density and syntax

level.

SecureMEReq: A Tool Support to Check for

Completeness of Security Requirements

Nuridawati Mustafa, Massila Kamalrudin, Safiah Sidek

SecureMEReq: A Tool Support to Check for Completeness of Security Requirements

769

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B11250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1125.0982S1119

Table 1: Security Requirements Elicitation Techniques

and Tool

III. OUR APPROACH

Considering from the gaps found in the previous section,

our research aims to propose a security requirements

template-based approach to improve the density of

requirements that can lead in writing complete security

requirements. We proposed an overall automated approach,

as illustrated in Figure 1. This approach composes of six (6)

main steps, which are shown in Table 2.

 Figure 1: An Overview of SecureMEReq Approach

Table 2: The process of SecureMEReq

IV. TOOL USAGE EXAMPLE

We have developed a prototype tool, called SecureMEReq.

The SecureMEReq was developed using PHP programming

language and adopts Model-View-Controller (MVC) design

pattern and three-tier architecture. Our tool provides the (1)

extraction of template-based components from

client-stakeholders, (2) analysis of template-based density

from SRCLib (3) analysis of requirements syntax from

SecLib and (4) completeness prioritization. We demonstrated

the features of our tool using the user persona as per

described below:

Hardy, a requirements engineer would like to validate the

requirements provided by the client-stakeholder using

SecureMEReq. He sits with Lew, who is the project manager

to validate the requirements, which he captured earlier.

Figure 2: User Interface of SecureMEReq in used

As shown in Figure 2, he inserts the requirements in the

form of business scenario in the text editor (1). Besides, he

also needs to insert several template-based components,

which are the domain, goal, terms and definitions, acronym,

scope and target audience as in (2). From there, he clicks the

“Calculate” button to generate the density for template-based

components and syntax density (3). Then, Hardy can view the

template-based density and syntax density results (4). If

Hardy is unhappy with the result, he can edit/update the

inputs and recalculate, if needed. Besides, Hardy and Lew

can review the “Suggestion” and “Lexical Density by

Sentence” as in Figure 3 (5). In order to allow Lew to get

better understanding of the requirements structure, he then

clicks the “Next” button to review the analysis of security

requirements (6).

In Figure 4 , Hardy and Lew can review the analysis for

each requirement completeness. Here, Hardy and Lew can

validate each requirement density status and structure, such

as the Subject, Object, Verb, Security Mechanism,

Ambiguous Words used, Security Properties and the

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

770

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B11250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1125.0982S1119

completeness status for each requirement (7)(8). They can

also view the examples of each component if needed (11).

Finally, he can view the overall completeness for all

requirements (9) and Lew can decide whether to proceed with

the requirements or amend it (10).

Figure 3: Template-Based and Syntax Density

Embedded in SecureMEReq

Figure 4: Security Requirement Completeness

Prioritization in SecureMEReq

V. RESULT AND DISCUSSIONS

To evaluate our approach and tool, we conducted usability

tests. The purpose of the usability tests was to evaluate the

usefulness of our tool’s features for extraction of

template-based components from client-stakeholders, syntax

checking template from pattern library and completeness

analysis. This usability test was conducted with novice

participants (novice RE) represented by 33 undergraduate

students from the course of Software Validation and

Verification. These students were majoring in Software

Engineering in Universiti Teknikal Malaysia Melaka.

Basically, they have sufficient background and knowledge to

understand about software requirements. The purpose of

selecting novice participants is to investigate how they

explore and use the tool.

Figure 5 shows the outcomes for the questionnaire-based

usability criteria. Figure 5 shows the outcomes of the

usability research for our tool's template-based strategy. The

findings are very positive, with the participants ' strong

agreement on the usefulness of the instrument (92% highly

agree to or agree on its effectiveness), its ease of use (more

than 87%), its easy learning (more than 88%) and its

satisfaction (86.9%). Only a small amount (less than 10%) of

the participants had not made a decision or disagreed with the

utility of the tool. In general, the results of usability show that

our prototype tool is helpful, simple to use and simple to

learn. When using the tool, users have also shown their

increased amount of satisfaction.

Figure 5: SecureMEReq Usability Study Result

VI. CONCLUSION AND FUTURE WORKS

In summary, we have presented our prototype tool, called

SecureMEReq that provides the (1) extraction of

template-based components from client-stakeholders; (2)

analysis of template-based density from SRCLib; (3) analysis

of requirements syntax from SecLib; and (4) analysis of

completeness prioritization. The results of our evaluation

indicate that our prototype tool can make it easier to compile

full security specifications and help requirement engineers to

elicit safety demands.For future research, we will extend the

evaluation of our tool by evaluating the efficacy of our

approach in terms of completeness. We will conduct

completeness testing to evaluate the completeness of eliciting

security requirements by comparing manual elicitation with

our prototype tool. This is to determine the ability of our

SecureMEReq tool to produce complete security

requirements. We firmly think that our template-based

strategy can help to increase clarity about the requirements

which will enable secure software development to be

complete and successful.

VII. ACKNOWLEDGEMENTS

We would like to express our gratitude to the university,

UTeM and MoHE for the research funding:

FRGS/1/2015/ICT01/FTMK/02/ F00325.

SecureMEReq: A Tool Support to Check for Completeness of Security Requirements

771

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B11250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1125.0982S1119

REFERENCES

1. P. O. Antonino, M. Trapp, and A. Venugopal, “Automatic

Detection of Incomplete and Inconsistent Safety

Requirements,” Apr. 2015.

2. A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity As A

Resource To Disclose Tacit Knowledge,” in IEEE 23rd

International Requirements Engineering Conference (RE

2015), 2015, pp. 26–35.

3. D. Firesmith, “Are Your Requirements Complete?,” J.

Object Technol., vol. 4, no. 1, pp. 27–43, 2005.

4. A. Banerjee, M. Sharma, C. Banerjee, and S. K. Pandey,

“Research On Security Requirements Engineering:

Problems And Prospects,” MATRIX Acad. Int. Online J.

Eng. Technol., vol. III, no. 1, pp. 32–35, 2015.

5. M. Kamalrudin, N. Mustafa, and S. Sidek, “A Preliminary

Study: Challenges In Capturing Security Requirements

And Consistency Checking By Requirement Engineers,”

J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1–7,

pp. 5–9, 2017.

6. C. Banerjee, A. Banerjee, and S. . Sharma, “Use Case And

Misuse Case In Eliciting Security Requirements :

MCOQR Metrics Framework Perspective,” Int. J. Mod.

Electron. Commun. Eng., vol. 5, no. 3, pp. 35–39, 2017.

7. M. Riaz, J. Stallings, M. P. Singh, J. Slankas, and L.

Williams, “DIGS – A Framework for Discovering Goals

for Security Requirements Engineering,” in ACM

International Symposium on Empirical Software

Engineering and Measurement (ESEM 2016), 2016, p. 35.

8. M. Riaz, J. King, J. Slankas, L. Williams, F. Massacci, C.

Quesada-lópez, and M. Jenkins, “Identifying the Implied:

Findings from Three Differentiated Replications On The

Use Of Security Requirements Templates,” Empir. Softw.

Eng., vol. 22, no. 4, pp. 2127–2178, 2016.

9. M. Riaz, S. Elder, and L. Williams, “Systematically

Developing Prevention, Detection, and Response Patterns

for Security Requirements,” in Requirements Engineering

Conference Workshops (REW), 2016, pp. 62–67.

10. M. Riaz, J. King, J. Slankas, and L. Williams, “Hidden In

Plain Sight: Automatically Identifying Security

Requirements From Natural Language Artifacts,” in IEEE

22nd International Requirements Engineering

Conference, RE 2014, 2014, pp. 183–192.

11. M. Riaz, J. Slankas, J. King, and L. Williams, “Using

Templates To Elicit Implied Security Requirements From

Functional Requirements - A Controlled Experiment,” in

ACM The 8th International Symposium on Empirical

Software Engineering and Measurement, ESEM 2014,

2014, p. 22.

12. N. Yusop, M. Kamalrudin, S. Sidek, and J. Grundy,

“Automated Support to Capture and Validate Security

Requirements for Mobile Apps,” in Communications in

Computer and Information Science, vol. 671, no.

November, 2016, pp. 97–112.

13. A. Motil, B. Hamid, A. Lanusse, J.-M. Bruel, A. Motii, B.

Hamid, A. Lanusse, and B. Jean-Michel, “Guiding The

Selection Of Security Patterns Based On Security

Requirements And Pattern Classification,” in ACM The

20th European Conference on Pattern Languages of

Programs, EuroPLoP 2015, 2015, p. 10.

14. H. El-Hadary and S. El-Kassas, “Capturing Security

Requirements For Software Systems,” J. Adv. Res., vol. 5,

no. 4, pp. 463–472, Jul. 2014.

15. K. Beckers, I. Côté, and L. Goeke, “A Catalog of Security

Requirements Patterns For The Domain of Cloud

Computing Systems,” in ACM The 29th Symposium On

Applied Computing, 2014, pp. 337–342.

16. S. Yahya, M. Kamalrudin, S. Sidek, and J. Grundy,

“Capturing Security Requirements Using Essential Use

Cases (EUCs),” in The First Asia Pacific Requirements

Engineering Symposium, APRES 2014, 2014, vol. 432

CCIS, pp. 16–30.

17. P. Salini and S. Kanmani, “Elicitation of Security

Requirements for E-Health System by Applying Model

Oriented Security Requirements Engineering (MOSRE)

Framework,” in ACM The Second International

Conference on Computational Science, Engineering and

Information Technology, CCSEIT 2012, 2012, pp. 126–

131.

18. S. H. Houmb, S. Islam, E. Knauss, J. Jürjens, and K.

Schneider, “Eliciting Security Requirements And Tracing

Them To Design: An Integration Of Common Criteria,

Heuristics, and UMLsec,” Springer Requir. Eng., vol. 15,

no. 1, pp. 63–93, Mar. 2010.

