
International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019 

 

769 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B11370982S1019/2019©BEIESP 

DOI:10.35940/ijrte.B1137.0982S1019 

 

Abstract: Interprocess Communication (IPC) is used by the 

cooperating processes for communication and synchronization. 

With the advent of Distributed Systems and Microkernel 

Operating systems, IPC has been used for designing the system 

for cooperation. This raised the requirements for improving the 

communication and synchronization for the better performance 

of the system. Here, a mechanism of synchronization between 

the processes to reduce the waiting time of process using POSIX 

(Portable Operating System Interface) threads has been 

proposed to perform and synchronize the given task.     

 

Keywords : IPC, Microkernel Operating System, Distributed 

Operating System, POSIX. 

I. INTRODUCTION 

Interprocess Communication is the mechanism that makes 

the processes to communicate and synchronize actions for 

communication. For example, a web browser demands a web 

page from a web server, HTML data is returned back to the 

client web browser by a web server serving the request. Basic 

IPC structure includes two operations: send(message) and 

receive(message). Cooperating process can send the message 

which can either be of fixed or variable size. Also the 

communication link must exist between the cooperating 

processes if the cooperating processes want to communicate. 

These communication links can be unidirectional or 

bidirectional. The transfer of data among the processes 

usually makes use of sockets like telephone connection [1]. 

There are two types of processes: Independent and 

Cooperating. A process which cannot affect parallel 

processes or get affected by the other executing processes or 

the process which cannot share data with other processes in 

execution is called the independent process. A process is 

termed as cooperating if it can be affected or can affect other 

processes executing parallel in the system [2]. The message 

passing system is widely used for communicating data for the 

distributed systems. For the microkernel Operating Systems 

this model can be implemented by using shared memory or 

pipes. 

To implement this model on a distributed system, we need 

to use the sockets for communication. For the microkernel 

 
Revised Manuscript Received on September 25, 2019 

* Correspondence Author 

Sukhvinder Singh Bamber, Assistant Professor, Computer Science & 

Engineering, University Institute of Engineering (UIET), Panjab University 

SSG Regional Centre, Hoshiarpur, Punjab, India. 

 

operating system, any of the five methods: FIFOs, Mapped 

Memory, Pipes, Shared Memory and Sockets for IPC can be 

used [1]. Shared Memory is a mechanism in which multiple 

executing processes in a system can access the same block of 

memory which turns out to be a shared buffer for the 

cooperating processes to communicate parallel with each 

other. Memory Mapped method is a mechanism in which a 

file is mapped onto RAM and can then be modified by 

directly changing memory address instead of sending it to a 

stream. This mechanism is equally beneficial as a standard 

file. Pipe is another mechanism in which data is written at 

the writable end of the pipe and then the operating system 

buffers it till it is read at the readable end of the pipe. Full 

duplex data streams between the cooperating processes can 

be implemented by creating two pipes utilizing standard 

input and output. Socket is a mechanism of transferring the 

data through the network interface to a parallely cooperating 

process on the local computer or to another computer in the 

network.    

Every type of function is implemented using threads. A 

thread is the smallest set of instructions (programmed) that 

can be executed independently by a scheduler in execution, 

which further is the part of an operating system [3]. 

Execution/implementation of processes and threads vary in 

one operating system to another, but in most of the cases a 

thread is a part/component of a process in execution [4]. 

POSIX thread, also referred to as pthread, is an executing 

sequence of instructions that executes independently from 

the platform/language in which developed as well as a 

parallel execution model. It enables the executing program to 

control parallel multiple different execution flows of work 

which may overlap the time allocated. Each of this workflow 

is called a thread. The execution and control of these 

workflows is achieved by calling the POSIX Thread API 

(Application Programming Interface). POSIX thread is an 

API defined in the standard POSIX 1c. thread extension 

(IEEE Std 10031c-1995) [6]. Here, a mechanism of 

synchronization between the processes to reduce the waiting 

time of process using POSIX threads has been proposed to 

perform and synchronize the given task. 

 

 

Implementation of Improved Synchronization in 

Inter Process Communication using Threads for 

Microkernel and Distributed Operating Systems 

Sukhvinder Singh Bamber 



 

Implementation of Improved Synchronization in Inter Process Communication using Threads for Microkernel and 

Distributed Operating Systems 

770 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B11370982S1019/2019©BEIESP 

DOI:10.35940/ijrte.B1137.0982S1019 

II. IMPLEMENTATION 

The synchronization model can be implemented using 

threads for two types of systems: Distributed Systems and 

Microkernel Operating Systems. In the Distributed Systems 

there may be many servers but for the simple explanations of 

the model one client system and two server systems are taken. 

And, in the Microkernel Operating System, there will be one 

user interactive application and two systems are taken. The 

explanations for implementation for both of the systems are 

given below separately: 

III. DISTRIBUTED SYSTEMS 

For the sake of simplicity and better understandability: one 

client system and two server systems are considered. Every 

type of system has its own operating system. An operating 

system always either does something or waits for an input 

from user. Let’s consider that the client system has an 

application which directly interacts with the user. As soon as 

user gives the command two threads will be created: one 

thread takes the data as input (data on which the operation is 

to be performed) from the user and another initializes the 

server application which has the definitions of the procedures 

to perform the task commanded by the user. Let’s consider 

this as a Server: S1. If the server application installed at S1 

can perform the complete task then it is performed and output 

is returned back to the requesting Client System and the 

application S1 is terminated. Else if S1 has the application 

program which can partially perform the task and some 

procedures required to complete the remaining task is in the 

server application program installed at Server2: S2, then 

again two threads are created on the S1: one thread will 

perform the operation partially and generate a new data and 

another initializes the server application installed at S2 

which has the procedures to complete the task. 

Eventually, on the S2 task will be finished and output is 

returned to the S1 and then S2 application is terminated. 

Finally, S1 returns the output to the client system and S1 

application is terminated. 

 

 

Figure 2.1: Implementation of working model for distributed systems (T1-T4 are pthreads). 

IV. MICROKERNEL OPERATING SYSTEM 

In a monolithic kernel (GNU/Linux) the complete kernel 

runs under a single process. For every particular task a child 

process is created using clone() system call. In a monolithic 

kernel, modularity is achieved by the dynamic loading of 

modules called hot-plugging. But the monolithic kernels 

cannot be used in the real time operating systems. In this type 

of operating systems, microkernels are used. So there are 

many processes for a single kernel. Here for improving the 

performance of operating system, communications between 

the processes (IPC) has to be improved. This paper presents 

an improved model of synchronization between the 

processes. Let there be a process that directly interacts with 

the user (usually command line interface or graphics user 

interface) and two other processes having the procedures to 

perform the tasks. The user interactive application is always 

in a waiting state to take the input from the user. When a 

command is given by the user two threads are created: one 

takes the input data from the user, another initializes the 

process that has the procedures to perform the task. Let’s 

consider it is Process: P1. Now if task can be performed only 

by the P1 then it is performed and output is returned to the 

user interactive process and P1 is terminated. Else if P1 does 

not have enough procedures to perform the complete task 

then in P1, two threads are created. First thread initializes 

another process (P2), performs the partial task and generates 

a new data as an input to the P2. The P2 performs the 

remaining task to generate the final output. The output is 

returned to the P1 and then the process P2 is terminated. Now 

P1 returns the output to the user interactive application and is 

terminated.  

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-2S10, September 2019 

 

771 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B11370982S1019/2019©BEIESP 

DOI:10.35940/ijrte.B1137.0982S1019 

 
 

Figure 2.2: Implementation of working model for microkernel operating systems (T1- T4 are pthreads) 

V. CONCLUSION 

By using threads we can initialize the application the data 

is available. One thread initializes the process to perform the 

task and another thread makes a container to receive the data. 

As soon as the data is available, the application program 

(contains the function implemented as thread function) is 

initialized. So the application program does not need to wait. 

This model can be used to design a client operating system 

which will make the Remote Procedure Calls (RPCs) and 

server operating system for the distributed systems. The 

procedures are stored at the servers. If these procedures are 

dependent on other procedures then the procedures can be 

stored on multiple servers for modularity and convenience. 

So by using the synchronization model presented in this 

paper, client and server programs can be designed with 

improved performance due to reduced waiting time of the 

process, which depends on the data generated by the other 

processes. 

At the microkernel level, there are large numbers of 

communications between processes. So by using the model 

presented in this paper we can reduce the waiting time of any 

process in the kernel.  

REFERENCES 

[1] “Advanced Linux Programming”, Mark Mitchell, Jeffrey Oldham and 

Alex Samel C-5(95). 

[2] “Operating System Concepts 7th Edition”, Silberchatz, Galvin and Gagne 

C-3(94). 

[3] “How to make multiprocessor computer that correctly executes 

multiprocess programs”, IEEE Transaction on Computers, Lemport, 

Leslie (Sep, 1979), C-28(9). 

[4] Thread (Cmputing) – www.wikipedia.org 

[5] Pthread (Win-32): Level of standard Conformance 2006-12-22, 2010. 

[6] POSIX_Thread – www.wikipedia.org. 

 

 


