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 

Abstract:-Medical wastes is now a major concern of the world 

community and more particularly that of Moroccans. Indeed, 

these wastes, classified as hazardous products, are the source of 

serious infections, contamination of groundwater and air 

pollution. Through this paper, we encouraged the use of 

ridesharing to cope with the risks and costs arising from the 

logistics of these medical wastes. Thus, we have proposed a 

mathematical model that governs the multi-objective nature of this 

logistics and the various constraints associated with it. Since the 

exact approach had difficulties in large instances, we proposed the 

Genetic Algorithm and Evolution Strategy as metaheuristic to 

solve the model. The Evolution Strategy showed its efficiency and 

stability and therefore we have demonstrated through this 

metaheuristic the possibility of a compromise between the main 

objectives of our model. 

 

Keywords: Multi-objective optimization, Ridesharing, Pickup 

and delivery, Heterogeneous fleet, Reverse Logistic, HeuristicLab 

I. INTRODUCTION 

The medical waste (MW) are defined as those generated 

by medical care activities. According to the World Health 

Organization (WHO), they include infectious waste, 

anatomical waste, pointed and sharp objects, chemicals, 

genotoxic waste, and radioactive waste [1]. Hospitals, health 

care facilities, laboratories and research centers are the main 

sources of these wastes. The seriousness of the potential risks 

stemming from poor management of these wastes has made 

management of solid wastes in general, and MW in 

particular, one of the pillars of the United Nations 

Development Program [2]. Morocco is no exception to this 

international trend. As an important component in the climate 

system, the management of MW has caused a great deal of 

ink from civil society and the local press. Consequently, the 

Moroccan state has made a legal and technical effort to 

improve the management of MW. However, the current 

situation reveals a dramatic gap between regulation and 

practice in the field [3]. A considerable amount of 

recommendations has been cited in the GIZ report. Among  

 

these recommendations, we find the outsourcing of collection 
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and transport to professionals. Nevertheless, the absence of 

logistic operators makes this recommendation almost 

impossible. This situation has pressed the medical instances 

to keep their own fleets to transport their MW as shown in 

figure 1. However, this in-sourcing transport begins to be 

more and more expensive, mainly in urban areas such as the 

city of Casablanca where traffic is very intense. Thus, the 

clinics are looking for an alternative solution to control their 

cost while waiting for the conditions of outsourcing to be met 

in the Moroccan case.  

 
Figure 1. The Current Scheme for the Waste Disposal 

Management 

Recently, several articles in the literature have clarified the 

benefits of ridesharing as an effective solution to control 

costs and pollution. The objective of this work is to study 

how to implement this solution for transportation of MW in 

the case of Casablanca city. To do this, the second section of  
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this paper begins with a detailed definition of the problem 

and outlines the state of the art of the concepts linked to our 

problem. The remaining part of the paper proceeds as 

follows: The third part presents the mathematical model that 

governs the proposed model.  

The fourth part develops the model resolution and carries 

out a series of experiments to test the robustness of the model 

and show its economic and environmental interest. 

II. PROBLEM DEFINITION AND STATE OF ART& 

RESULTS 

As specified above, our aim objective is to benefit from 

ridesharing features in order to ease transport cost of clinics. 

Ridesharing is defined as a mode of transportation in which 

several travelers share a vehicle for a trip and split the trip 

costs[4]. several research studies have shown that ridesharing 

will not only generate economic gain but also protect 

environment and mitigate a traffic congestion[5][6]. These 

results encourage us to implement ridesharing in our case. In 

fact, the nature of the product transported is hazardous and 

can have a negative impact on the environment[7]. As we 

assume that incinerators (MW Delivery) and clinics (MW 

Collect) are going to be served by heterogeneous vehicles 

while respecting TW, our problem is called Heterogeneous 

capacitated Vehicle Routing Problem Pick-up and Delivery 

with time windows (HCVRPPDTW). Cherkesly et al. [8] 

proposed two different branch-price-and-cut algorithms to 

solve models and algorithms for the PDVRPTW and multiple 

stacks. This algorithm, applied in case of the transportation of 

heavy or dangerous material, gives good results with 

instances up to 75 according to the authors. Certainly, starting 

the project by integrating the elements cited above will lead 

to coalitions. Therefore, the potential risk of contamination 

from the coalition of clinics generating different categories of 

MW must be considered. 

 

Figure 2. Proposed Ridesharing HCVRPPDTW Scheme for the MW Logistic’s Management 

 

Roughly speaking our case is a ridesharing multi-objective 

case (cost, coalition risk) with HCVRPPDTW as shown in 

figure 02. The present study fills a gap in the literature by 

adding some particularities compared to the existing models: 

Multi-objective (MO) model, Heterogeneous fleet (HF), 

Multiple Depot (MD), Strict Time Windows (TW), 

Hazardous Materials (MW), Pickup and delivery (PD) and 

Ridesharing (RS). Then, the authors can name the model 

studied a Ridesharing Multi-objective HazMat 

HCVRPPDTW (RMOHHFCVRPPDTW). In our 

knowledge, it is the first time that such model was studied.  
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The reader should bear in mind that the study is based on a 

model where sorting takes place in-house. The distances 

between clinics and incinerators are symmetrical. 

III.  MODEL FORMULATION 

3.1) Hfcvrppdtw model: 

The HFCVRPPDTW can be defined on a directed graph G 

= (N, A), where: N = {0,…n-1, n,..., 2n-1, 2n,…,3n-1} is the 

set of nodes and A is the set of arcs where n= the number of 

clinics = the number of incinerators = the number of virtual 

depots. The subsets P = {n, ..., 2n-1} is the sets of pickup 

(clinics) and  delivery (incinerators). With each request i is 

associated a pickup node i ∈ P, where a request to pick up is 

strictly positive and a demand to deliver is null. Beside a 

delivery node i ∈ P, where a demand to deliver is strictly 

positive and a request to pick up is null. The parameters of 

our model are: 

Dem

i 

: a demand to deliver in each node i ∈ P, 

bi : the earliest time at which service at node i can start i ∈ N, 

ei : the latest time at which service at node i can start i ∈ N, 

K : set of heterogeneous vehicles, 

Cak : carrying capacity of the vehicle k,  k є K, 

Cfix

ek 

: fixed cost if vehicle k is used, 

Cvar

k 

: transport variable cost 

si : service time at node i, i ∈ N 

dij : distance between node i and node j , i, j ∈ N 

tij : travel time between node i and node j,  

Decision variables: 

yk : a binary variable (BV) equal to 1 if vehicle k is used, 0 

otherwise,∀ k ∈ K 

xijk : a BV equal to 1 if arc (i, j) is used by vehicle k, 0 otherwise, 

 i, j ∈ N, k ∈ K 

twi : a continuous variable (CV) which shows waiting time at node 

i, ∀ i ∈ N 

Tik : a CV which shows the departure time of request from node 

i, ∀ i ∈ N 

Gik : a CV which represents available MW in the vehicle k when 

arriving to node i      

Tak : a CV which shows the time at which vehicle k returns to its 

depot   k ∈ K 

Tdk : a CV which shows the departure time of a vehicle k from its 

depot node k ∈ K 

Z1 : total cost of routing (Variable cost + fixed cost of used 

vehicles) 

The following equations manage our model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 (1) 

𝑍1 =  𝑦𝑘 ∗ 𝐶𝑓𝑖𝑥𝑒𝑘

𝐾

𝑘=0

+    𝑥𝑖𝑗𝑘 ∗ 𝐶𝑣𝑎𝑟𝑘 ∗  𝑑𝑖𝑗

𝐾

𝑘=1

3𝑛−1

𝑗 =0

3𝑛−1

𝑖=0

 (2) 

  𝑥𝑖𝑗𝑘

𝐾

𝑘=1

3𝑛−1

𝑖=0

= 1                                                                                    𝑗 ∈ 𝑃 

 

(3) 

  𝑥𝑖𝑗𝑘

𝐾

𝑘=1

3𝑛−1

𝑗 =0

= 1                                                                                   𝑖 ∈ 𝑃 

(4) 

 𝑥𝑖𝑝𝑘

3𝑛−1

𝑖=0

=   𝑥𝑝𝑗𝑘                                                                        𝑝

3𝑛−1

𝑗 =0

∈ 𝑃, 𝑘 ∈ 𝐾 

(5) 

𝑥0𝑘𝑘

= 𝑦𝑘                                                                                                          𝑘
∈ 𝐾 

(6) 

𝑥𝑘+𝑛0𝑘

= 𝑦𝑘                                                                                                      𝑘
∈ 𝐾 

(7) 

𝑥𝑖𝑖𝑘 = 0                                                                           𝑖
∈  0, … ,3𝑛 − 1 , 𝑘 ∈ 𝐾 

(8) 

𝑇𝑖𝑘 + 𝑠𝑖 + 𝑡𝑖𝑗 + 𝑡𝑤𝑗 − 𝑇𝑗𝑘 ≤  1 − 𝑥𝑖𝑗𝑘  ∗ 𝑀 𝑖, 𝑗 ∈ 𝑃, 𝑘

∈ 𝐾 
(9) 

 −1 + 𝑥𝑖0𝑘 ∗ 𝑀 ≤ 𝑇𝑖𝑘 + 𝑠𝑖 + 𝑡𝑖0 − 𝑇𝑎𝑘

≤  1 − 𝑥𝑖0𝑘 ∗ 𝑀    
                               𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾 

(10

) 

 −1 + 𝑥0𝑗𝑘  ∗ 𝑀 ≤ 𝑇𝑑𝑘 + 𝑡0𝑗 − 𝑇𝑗𝑘
≤  1 − 𝑥0𝑗𝑘  ∗ 𝑀             𝑗 ∈ 𝑃, 𝑘 ∈ 𝐾 

(11

) 

𝑏𝑖 ∗ 𝑦𝑘 ≤ 𝑇𝑖𝑘

≤ 𝑒𝑖 ∗ 𝑦𝑘                                                                       𝑖 ∈ 𝑃, 𝑘
∈ 𝐾 

(12

) 

𝑏0 ∗ 𝑦𝑘 ≤ 𝑇𝑎𝑘

≤ 𝑒0 ∗ 𝑦𝑘                                                                               𝑘
∈ 𝐾 

(13

) 

𝑏0 ∗ 𝑦𝑘 ≤ 𝑇𝑑𝑘

≤ 𝑒0 ∗ 𝑦𝑘                                                                               𝑘
∈ 𝐾 

(14

) 

 −1 + 𝑥𝑖𝑗𝑘  ∗ 𝑀 ≤ 𝐺𝑖𝑘 − 𝐺𝑗𝑘 + 𝐷𝑒𝑚𝑗

≤  1 − 𝑥𝑖𝑗𝑘  ∗ 𝑀     𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 

(15

) 

𝐺𝑗𝑘 − 𝑐𝑎𝑘 ∗ 𝑦𝑘 ≤  1 − 𝑥𝑖𝑗𝑘  ∗ 𝑀               𝑖 ∈ 𝑁, 𝑗

∈  𝑛, . . . , 2𝑛 − 1 , 𝑘 ∈ 𝐾 

(16

) 

𝐺𝑗𝑘 − 𝑑𝑒𝑚𝑗 ≥  −1 + 𝑥𝑖𝑗𝑘  ∗ 𝑀                 𝑖 ∈ 𝑁, 𝑗

∈  𝑛, . . . , 2𝑛 − 1 , 𝑘 ∈ 𝐾 

(17

) 

𝐺𝑗+𝑛𝑘 − 𝑐𝑎𝑘 + 𝑑𝑒𝑚𝑗 ≤  1 − 𝑥𝑖𝑗 +𝑛𝑘  ∗ 𝑀 𝑖 ∈ 𝑁, 𝑗

∈  𝑛, . . . , 2𝑛 − 1 , 𝑘 ∈ 𝐾 

(18

) 

𝐺0𝑘

= 0,                                                                                                            𝑘
∈ 𝐾 

(19

) 

𝑥𝑖𝑗𝑘 , 𝑦𝑘 ∈  0,1  ;  𝑍1, 𝑡𝑤𝑖 , 𝑇𝑖𝑘 , 𝑇𝑎𝑘 , 𝑇𝑑𝑘 , 𝐺𝑖𝑘

∈ ℝ+             𝑖 ∈  0. . 𝑛 , 𝑘 ∈ 𝐾 

(20

) 

1.1. The equations (1)-(2) minimize the total travel cost 

(fixed and variable) of the pickup and delivery vehicles 

subject to constraints (3) to (20). Constraints (3)-(4) assure 

that all pickup and delivery nodes are visited exactly once by 

the same vehicle. Flow conservation is considered by 

Constraints (5). Constraints (6)-(7) guarantee that each 

vehicle leaves its clinic at most once and its route starts and 

ends at its assigned clinic. The loop is avoided by the 

constraint (8). Constraints (9)-(14) compute the time 

variables and ensure that the time windows are respected, 

also they avoid sub-tours. Constraints (15) computes the 

available MW in each vehicle and constraint (16)-(18) 

ensures that the capacity of each vehicle is respected at 

pickup and delivery nodes. 

Constraint (19) give the initial  
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value of the load of vehicle at depot. Finally, constraint (20) 

defines the variables 

3.2)Risk Calculation: MOHHFCVRPPDTW model 

As aforementioned above all clinics insisted to compose 

homogeneous coalitions, particularly in term of risk 

contamination between clinics. In order to insure credibility 

and more pragmatism to our research, we start initial 

interviews with those clinics. The category of MW, 

proximity, relationship between clinics, rate of commitment 

to sustainable development and the respect of internal 

collect’s standards are the main criterion cited to assess the 

risk contamination between clinics. Then, we give the set of 

criterion to the clinics to weight each criterion and fill their 

rating to be in coalition with another clinic according to each 

criterion. Based on the tables filled by clinics, we have 

established a risk matrix, which emphasize the risk 

contamination when two clinics are on the same coalition. 

We denote: 

Riskij : the risk contamination between clinic i and clinic j 

zijk : a BV equal to 1 if clinic i and clinic j are on the same 

coalition using vehicle k, 0 otherwise,  i, j ∈ P, k ∈ K 

α, β : Weighting of cost function and risk function 

respectively 

Then the risk calculation could be expressed as follow: 

𝑍2 =    𝑧𝑖𝑗𝑘 ∗  𝑅𝑖𝑠𝑘𝑖𝑗

𝐾

𝑘=1

2𝑛−1

𝑗 =𝑛

2𝑛−1

𝑖=𝑛

 (21) 

Subjected to: 

 𝑥𝑝𝑖𝑘 +   𝑥𝑝𝑗𝑘 ≥ 2 ∗ 𝑧𝑖𝑗𝑘          𝑖, 𝑗

3𝑛−1

𝑝=0

3𝑛−1

𝑝=0

∈  𝑛, . . . , 2𝑛 − 1 , 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 

(22) 

 𝑥𝑝𝑖𝑘 +   𝑥𝑝𝑗𝑘 ≤ 1 + 𝑧𝑖𝑗𝑘         𝑖, 𝑗

3𝑛−1

𝑝=0

3𝑛−1

𝑝=0

∈  𝑛, . . . , 2𝑛 − 1 , 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 

(23) 

The equation (22) will enforce 𝑧𝑖𝑗𝑘 = 0 if clinics i and j are 

not on the same coalition because the term in the left becomes 

less than 2. Whereas the equation (23) will enforce 𝑧𝑖𝑗𝑘 = 1 

if clinics i and j are on the same coalition because the term in 

the left will be equal 2. As our model is multi-objective, the 

equation (1) becomes: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛼 ∗ 𝑍1 + 𝛽 ∗ 𝑍2 (24) 

3.3) Ridesharing constraints: RMOHHFCVRPPDTW 

model 

The aim of our model is to limit the number of vehicle used 

by clinics in order to optimize cost and to protect the 

environment by limiting the CO2 emission. Roughly 

speaking, instead of using all vehicles, some clinics will 

engaged their vehicle to transport their MW and those of 

other clinics. Thus, we will enhance our model with 

constraints linked to Ridesharing. 

 

 

 

 

 

 

 

Let: 

u

i 

: a CV which represent node potentials indicating 

the visit order of node i in the tour 

 The Rideshare model is subjected to the following 

constraints: 

𝑥0𝑖𝑘  = 𝑥𝑖+𝑛0𝑘                                                          𝑖
∈  𝑛, . . . , 2𝑛 − 1 , 𝑘 ∈ 𝐾 

(25) 

𝑥0𝑖+𝑛𝑘 = 𝑥𝑖0𝑘 = 0                                                 𝑖
∈  𝑛, . . . , 2𝑛 − 1 , 𝑘 ∈ 𝐾 

(26) 

 𝑥𝑖𝑗𝑘 =   𝑥𝑖+𝑛𝑗𝑘                                        𝑖

3𝑛−1

𝑝=0

3𝑛−1

𝑗 =0

∈  𝑛, . . . , 2𝑛 − 1 , 𝑘 ∈ 𝐾 

(27) 

𝑢𝑖 − 𝑢𝑗 ≤  1 − 𝑥𝑖𝑗𝑘  ∗ 𝑛 − 1               𝑖, 𝑗

∈  𝑛, . . . , 3𝑛 − 1 , 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 
(28) 

𝑢𝑖

≤ 𝑢𝑖+𝑛                                                                               𝑖
∈  𝑛, . . . , 2𝑛 − 1  

(29) 

𝑢𝑖

≥ 0                                                                                    𝑖
∈  𝑛, . . . , 3𝑛 − 1  

(30) 

Equation (25) make sure that a tour begins from the clinic, 

which own the vehicle used, and ends at his destination. 

However, constraint (26) prevent starting from incinerators 

or ending at clinics. Constraint (27) ensure the use of the 

same vehicle by origin and destination. Constraints (28) and 

(29) eliminate sub tours such as in equations (9) to (14) and 

ensure that each clinic precedes its corresponding incinerator. 

Finally, constraint (30) defines the non-negativity of ui. 

3.4) Data of computational study: 

Set of clinics: The study concerns a set of 30 clinics 

disseminated in the whole region of Casablanca. Thanks to 

Google map we get addresses and coordinates of each clinic 

and the distance and travel time matrices. Analysis of the 

historical data from each clinic revealed the stability of the 

quantities of medical waste generated daily by each clinic. 

Thus, the demand of each clinic is the average number of 

daily MW’s boxes generated. The distance between vehicle 

parking and waste storage in each clinic help us to estimate 

the unloading time. We have adopted a geographical 

breakdown based on the intensity of traffic. Consequently, 

areas with high traffic density should be served early before 8 

am.  

Set of vehicles: The size of the fleet is 30 vehicles and it is 

composed of 6 categories of vehicles with different 

capacities. The fixed and variable costs vary from one 

category to another.  

IV. SOLUTION METHODOLOGY 

4.1) Exact Approach:  

The validation of the model presented above is done on 

IBM ILOG CPLEX Optimization Studio 12.2. Our 

experiments are performed on an Intel® CORE(TM) i5-4200 

CPU with a 2.3 Ghz processor and 4 GB of RAM installed 

memory. The resolution by the exact approach has shown its  
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limits when the search space is too large. The results coming 

from the exact approach will be used in the next section to 

compare them with those from the heuristic approach in small 

instance. Based on a very broad field of studies, the genetic 

algorithm (GA) and Evolutionary Strategy(ES) is promising 

approximation algorithm that has addressed hard problems in 

recent decades [9][10]. For this reason, they will be adopted 

in the heuristic approach.  

4.2) Heuristic Approach: 

ES was developed in the 70’s by [11] and [12] at the 

technical university of berlin. The ES is mainly used at the 

first time to solve problems with continuous variables, 

discrete variants of ES are proposed to deal with 

combinatorial optimization problems. Recently Merkuryeva 

and V. Bolshakov[13] have studied integrated solutions for 

delivery planning and scheduling in distribution centers. The 

optimization using the ES gives the best solutions of a 

vehicle-scheduling problem with time windows. The GA is 

one of the best known evolutionary optimization techniques 

[14]. This meta-heuristic, which is based on the genetic 

method of the human body and the "elite of the strongest" in 

Darwin's theory, was initially developed by Holland [15] at 

the University of Michigan. Thangiah et al. [16] were the first 

to apply a GA to VRPTW. This first document describes an 

approach that uses a GA to find good coalition of customers. 

The main search operator in Genetic algorithms (GA) is the 

crossover operator which equally as significant as mutation, 

selection and coding in GA [17]. The crossover combines 

blocks from parents to produce their children. On the other 

hand, the mutation makes small local changes to ensure 

diversity in the population for a greater exploration of 

possible solutions. Several papers focus on crossover and 

mutation parameters for VRPTW [18] and others have 

worked on the improvement and comparison of crossover 

operators [19], [20] and [21]. HeuristicLab (HL) is a common 

platform, with a Graphical User Interface (GUI), equipped 

with heuristic and evolution algorithms, designed to use 

easily [22]. It combines both meta-heuristics and practical 

application cases whose interaction is possible thanks to the 

concept of the generic operator[23]. HL gives the user the 

possibility to define a new problem and realize the extension 

of the algorithms available in the library to adapt it to the 

context studied [24]. An extension of CVRPPDTW is written 

in C# code to adapt to the studied RMOHHFCVRPPDTW. 

Based on preliminary experiments we established the best 

feasible results for each algorithm using the following 

parameters: ES (Children: 500, Maximum Generation: 400, 

Mutation operator: Alba Manipulator Parents Per Child: 10 

Plus selection: Yes, (µ+ λ)-ES, Population Size: 10, 

Crossover operator:Potvin Crossover), AG (Crossover 

operator: Alba Crossover, Crossover Probability: 5%, Elite: 

5, Maximum Generation: 3000, Mutation operator: Alba 

Manipulator, Mutation Probability: 50%, Population Size: 

50, Selector: Proportional Selector). The validation of the GA 

and ES is done on the platform HL 3.3.15.15587. 

 

4.2.1) Validation and analysis of the approach: 

The benchmarking is the best way to validate the 

meta-heuristic proposed in the case of 

RMOHHFCVRPPDTW. However, this is the first time that a 

problem of RMOHHFCVRPPDTW is dealt with in our 

knowledge. Nonetheless, we can generate our ES and GA for 

small instances to compare the results with the global 

optimum. 

Small Instance:  

The table 1 presents the comparison between the global 

optimum and the average results of heuristic’s approach 

algorithm. Analyzing these results, we can conclude that the 

difference between the global optimum and the results of the 

proposed ES and GA are respectively of 6% and 11%. The 

results encouraged us to justify the acceptability of the ES 

and GA algorithm’s performance. Nonetheless,we noticed 

that ES gives better results compared to GA. Also, the 

resolution time of the heuristics approach is significantly 

better than that of the exact approach. As a result, both ES 

and GA are experimentally found to be fast and highly 

successful.  

Table 1. Average results of different algorithm tested 

Algorithm 
Objective 

Function 

GAP to Global 

optimum 

Execution 

Time 

Exact Approach 684  23:49,0 

Evolution 

Strategy (ES) 
725 6% 02:38,2 

Genetic 

Algorithm (GA) 
803 11% 01:05,1 

 

Real Instance:  

We will compare the performance of ES and GA regarding 

the treatment of the actual instance studied. The comparison 

is based on fifty tests for each algorithm. The results are 

pertinent and the GA finds the best result shown in table 2. 

The ridesharing constraints chose clinics 5, 13 and 7 as a 

starting point. Therefore, their vehicles will be used to cover 

the routing according to the sequences specified in the table 

2. The weakness of this solution is in the resolution time, 

which is quite high relative to the desired performance in this 

kind of problem. The average results of experiments, 

represented by table 3, showed that the performances of ES 

are absolutely higher than GA. Indeed, the quality given by 

the ES algorithm is 40% better than one given by GA. In 

addition, the ES resolution time is a reasonable time and 

insignificant compared to that of the GA. 
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Table 2. Best result coming from real instance 

experiments 

  
Pickup and Delivery 

Sequence 
Cost Risk Quality 

Execution 

Time 

Routing 

1 

C5 C2 C1 I19 I20 I23 

C5 
928,25 26,00 477,12 

 

Routing 

2 

C13 C10 C11 I29 I28 

C4 C3 I21 I22  

C9 I27 C15 C16 I34 I33 

I31 C13 

1319,27 306,5 812,89 
 

Routing 

3 

C7 C14 I32 C6 I24 C12 

C8 I26 C17  

I30 C18 I36 I35 I25 C7 

1084,42 218 651,21 
 

C: Clinic, I: Incinerator                                    

Total: 
3331,95 550,5 1941,22 13:23,3 

 

Table 3. Average results of ES and GA in real instance 
  Best Quality Execution Time 

Evolution Strategy 2720.2 03:43.1 

Genetic Algorithm 3809.6 13:05.9 

GAP ES/GA 40%   

The results coming from small and large instance 

experiments confirm the validation of the selected ES and 

GA. Besides, the ES gave the best performances in a 

reasonable time. The following section will be dedicated to 

analyzing the stability of the proposed ES algorithm 

Population Size Experiments:  

To carry out this experiment we deal with two ES settings: 

population size “10” and “40”. The results from this 

experiment are presented in Figure 3. The analysis of the 

results of the various tests reveals a difference between the 

quality of the instances ES (10) and ES (40). These negligible 

differences in quality lead the authors to conclude on the 

stability of the proposed ES, the accuracy of the 

parameterization procedure and the effectiveness of the 

results of the present study. 

 

 
Figure 3.Best quality’s Result of large-scale population 

size analysis 

Experimentation of the weighting parameters:  

As the ES has shown high efficiency in the experiments 

above, it was chosen to study the possibility of any 

compromise between cost and risk. To perform this 

experiment, we varied the weighting of α and β to see the 

impact of the risk on the components of the objective 

function. Instead of using the absolutes values of W1 and W2, 

respectively, we normalize them so they become comparable. 

We use normalization in Bronfman et al. [25], where Yi is the 

normalized objective function. Wimax ,Wimin and Wi represent 

the maximum, minimum and actual value of each objective 

before normalization. 

Yi= 
𝐖𝒊−𝐖𝒊𝒎𝒊𝒏

𝑾𝒊𝒎𝒂𝒙−𝑾𝒊𝒎𝒊𝒏
  (31) 

As shown in Figure 4., the increase in the risk coefficient, 

from α < 0.3, leads to an exponential increase in routing 

costs. This behavior can be explained by the rejection of 

coalitions with a very high risk. So the model will choose 

more than one vehicle to build a low-risk coalition and 

therefore a more expensive route. An opposite behavior is 

observed for risk, the reinforcement of the cost coefficient, 

from α >= 0.6, leads to a better control of the routing cost and 

a spectacular increase in risk. The tuning of α and β values 

makes it possible to locate the sensitivity area of the objective 

function.  As shown in the figure 4., the components of the 

normalized objective function, cost and risk, are more stable 

and close to each other when 0.3<α <0.6. Thus, the search for 

any compromise between cost and risk must be done with α 

values in the interval ]0.3, 0.6[. In a practical case, clinics 

have to seek a compromise, which guarantees a desired 

coalition with an economic interest. Consequently, we can 

rely on our model to have such a compromise. 

 

 
Figure 4.Evolution of the normalized objectives 

according to α value (Real case) 

V. CONCLUSION 

This research sheds new light on reverse logistics in the 

case of MW, by proposing a multi-objective ridesharing 

model with evolution algorithms of a very complicated case 

of HCVRPPDTW. Our aim was to find a solution to a 

problem facing humanity. To do this, we took into 

consideration several realistic characteristics of the problem 

in order to make the model close to reality. The potential risk 

coming from hazardous nature of the MW has led us to create 

homogeneous coalitions to encourage clinics to adhere the 

proposed ridesharing approach. As the exact approach 

showed its limits in large instance, we proposed two 

evolution algorithms: ES and GA to better understand this 

phenomenon of the problem size. The performances of these 

algorithms are highly acceptable in both small and 

large-scale. Nonetheless, for the large scale, the ES is more 

effective than GA; it gave the best solutions within a 

reasonable time and showed its stability. Consequently, we  
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made a tuning of risk and cost parameters to study the 

possibility of any compromise in our multi-objective 

problem. The results showed that we can rely on our model to 

find a compromise between the different clinics. 

The reader should bear in mind that the study assumed that 

the parameters are deterministic. Thus, for a better 

contribution in the framework of our scientific research, there 

is some guidance for future research. We will use 

non-deterministic approaches to deal with the nature of 

parameters. Also we will integrate the game theory approach 

to establish coalitions between clinics. In fact, This approach 

has been successful in creating such coalition (Mouatassim et 

al., 2016) 
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