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 

Abstract— The developments in IC technology and rapid 

increase of transistor densities and scaling factor, the use of 

ECC’s acquired prominence. Multiple bit errors in memories due 

to technology scaling demands advanced error correction codes. 

SEC-DEC, DEC, burst error detection, Golay code, Reed Solmon 

codes etc. have much decoding complexity and latency. The above 

drawbacks can be reduced with OLS codes. OLS codes with 

majority logic decoding technique, modular construction and 

simple decoding mechanisms it enables low delay improvements. 

MBU’S can be addressed using OLS-MLD codes. This paper 

presents a detail study of developments in multibit ECC’s using 

OLS-MLD mechanism. 
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correction – double error detection; orthogonal latin squares; 
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I. INTRODUCTION 

Communication systems of deep space exploration are one 

of the impressive applications of ECC‟s. On the other hand 

ECC‟s are extensively used in storage device systems. A 

typical audio CD can accept one and a half million bits to 

represent just one second of music. At the same instant 6 

billion or so bits are added to protect the recorded music form 

scratches, dust… etc. Due to scaling of technology multiple 

bit upsets came into existence as the floor planning and 

routing became more complex. When technology scaled 

down from 180nm to 22nm, the ratio of multiple bit upsets 

(MBU) to single event upset (SEU) increases from 0.5% to 

3.9% [11]. Soft errors lead to loss of information, which 

ultimately effects the function of the devices, especially in 

avionics and space applications. Internal radiation can also 

cause soft errors (bit change).  

Early developments like SEC‟s, DEC‟s, SEC-DED, are 

unable to address the multiple bit upsets due to their decoding 

complexity. Memories like SRAM is not exceptional form 

MBU‟s.  Decoding and encoding has to be done in parallel 

with SRAM memories for fast access of data.  Developments 

like Hamming code, Bose – chaudhuri – Hocquenghem 

(BCH) codes, and Reed Solmon codes are more complex in 

parallel decoding [3][14]. Due to delay overheads and high 

area requirements the codes are limited to smaller 

applications. And most of the ECC‟s have serial decoding 

circuitry. An alternative for parallel decoding limitation is one 

step majority logic decodable (OS-MLD) codes such as 
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Euclidean geometry (EG) codes, Difference set (DS) codes 

[13].  But both the EG, DS codes have limited number of error 

correction capabilities and data size [8]. In addition to that, 

available data bits are not in the powers of two [3]. So 

OS-MLD is not suitable for SRAM memories as the data size 

is generally in the powers of two like 16, 32. This limitation 

has opened a new class of codes i.e. orthogonal latin square 

(OLS) codes.  OLS codes are derived from latin squares [1]. 

OLS codes are also a type of OS- MLD codes with wide range 

of word sizes and error correction capabilities. However it 

requires more number of parity bits compared to other ECC‟s.  

With increase in number of error correction bits, parity bits 

increase rapidly. Research is being done to reduce the parity 

bits and a method has been proposed recently [6]. In this 

paper different advancements in OLS-MLD codes are 

present. 

The rest of the paper is organized as follows. Introduction 

and basic implementation of OLS-MLD code is included in 

Section II. Recent developments of OLS-MLD codes are 

discussed in Section III. Section IV deals with a comparative 

study of different parameters. Conclusion and References are 

included in Section V.  

II. ORTHOGONAL LATIN SQUARE CODES 

Before A Latin Square is a matrix structured grid with the 

numbers „1 to n‟ occurs only once in each row and column. 

For example: Latin Square of order 4. 

2     3     1     4 

               4     1     3     2 

1     4     2     3 

3     2     4     1 

Two Latin Squares are said to be mutually orthogonal when 

two squares are superimposed, every order of co-ordinates 

should occur exactly once. The concept of mutually 

orthogonal latin squares (MOLS) can extend to a set of more 

than two squares, provided that every square must be mutually 

orthogonal to every other one.  

1    2    3                     1    2    3 

2    3    1                     3    1    2 

3    1    2       and        2    3    1   
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     The superimposing of two latin squares is shown below: 

Mutually OLS condition:  11     22     33  

                           23     31     12 

                              32     13     21 

OLS codes are constructed using these mutually orthogonal 

latin squares. Primary considerations for OLS codes are as 

follows 

Order of the matrix = m 
Number of error correcting bits = t 
Number of data bits that a code can protect are k = m

2
 

Number of check bits / parity bits = 2tm 

 In encoding technique each bit involves 2t parity bit 

computations and each other bit participates in at most one of 

those parity bits. This creates a simple correction when the 

number of bits in error is t or less. Decoding starts with 

recomputing the parity bits. The recomputed check parity bits 

are fed to one step majority logic and a majority vote is taken. 

If the majority value is one, it results in bit error and 

correction is needed else the decoded bit is true. If t +1 bits 

need to be corrected then simply 2m parity bits are added to 

the code.  

Modeling a parity check matrix H: 

Parity check matrix is modeled depends on error correction 

capabilities of the code. For single error correction (SEC) 

using OLSC. Consider an H- matrix for m = 4; k = 16 data 

bits, t=1 error correcting capability, 2tm= 8 parity / check 

bits.  

H   =   

Where I2m is identity matrix of size 2m. M1, M2 are 
matrices of size m X m

2
. The matrix M1 has m ones in each row. 

For the r
th 

row the one are at positions:  

((r-1) * m + 1, (r-1) * m+2, … (r-1) * m+m-1, (r-1) * m + 

m 

The matrix M2 is constructed as shown below:      

M2 = [  Im    Im     Im    … Im  ] 

The encoding matrix G is just the H matrix on which the 

check bits are removed.  

G   =   

In brief, the encoder with k=m2 data bits will generate 2tm 

check bits using generator matrix G, derived from OLS‟s. 

      Fig. 1.   Parity check matrix for OLSC (24, 16) having 

k=16 and t=1 

Generation of parity bits: 

Each row of the matrix M should have only m number of 

one‟s. As shown in the Fig. 1. OLS (24, 16) parity bits are 

calculated by performing an XOR operation of data bits 

present in each row of generator matrix. P0 is calculated by 

XOR of first 4 data bits (d0, d1, d2, d3) of row one in M1. P1 is 

calculated by XOR operation between d4, d5, d6, d7 of 2
nd

 row 

in M1. Likewise all other parity bits are obtained with XOR 

operation of data bits in respective rows of parity check 

matrix. Total 8 parity bits will be obtained as 2tm = 8 in OLS 

(24, 16) code. In the decoding process: each group of data bits 

involved in encoding mechanism will be verified against their 

respective parity bits to generate syndrome bits Si. S0 is an 

XOR operation of data bits along with its parity bit d0, d1, d2, 

d3, P0. Thus obtained syndrome bits are fed to majority logic 

decodable gate for error detection and correction.  

 

Fig. 2.   Parity check matrix for OLSC (32, 16) having 

k=16 and t=2 

 
Fig. 3. Encoder for OLS code k=16 and t=2 

The above figure shows that three XOR gates are required 

to generate one parity bit. Encoder of OLS (32, 16) requires 

48 two- input XOR gates [2]. As number of error correction 

bits increases, parity bits increases, that results in increase in 

XOR gates. Developments are going on to reduce the number 

of parity bits and logic gates which will be discussed later. 

The basic decoder along with correction logic of OLS code 

computes the syndrome Si as shown in Fig.4.  
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Fig. 4. Decoder for OLS code k=16 and t=2 

Syndrome bits thus calculated are connected to majority 

logic and correction module. To detect / correct a data bit di, 

syndrome bits having the same di as one of its input, are given 

to the OS-MLD gate [1] [6]. Inputs of OS-MLD correction 

logic for data bit d0 are shown in Fig.5. Encoder requires 

2tm(m-1) two input XOR gates and syndrome computation 

requires 2tm2 two input XOR gates [9]. 

 
Fig. 5. OLS-OS-MLD gate with correction logic 

OLS codes can be implemented for different values of m, t, 

and a few are listed in the Table-1. It is clear that with increase 

in correctable errors, parity bits needed to encode the data 

also increase in the same phase. With increase in parity bits, 

parameters like area, power and delay may get effected.  

TABLE 1. Orthogonal Latin square codes 

Latin 

square 

size 

(m) 

No. of 

errors 

(t)  

Data bits  

(m2) 

Parity 

bits 

(2tm) 

Total bits 

(m2 + 2tm) 

No. of 

XOR 

gates 

(encoder) 

3 2 9 12 21 36 

4 1 16 8 24 24 

4 2 16 16 32 48 

5 2 25 20 45 60 

8 2 64 32 96 96 

16 2 256 64 320 960 

The main drawback of OLS codes is, number of parity bits 

increase in increase with data bits. To generate these parity 

bits more number of XOR gates are required which effects the 

area and delay of the encoder and decoder modules. Having 

this in view more research is being done to reduce the number 

of parity bits and enhancing other parameters. In the next 

section recent advancements in OLS codes discussed.  

Fig. 6. Parity check matrix for OLSC (36, 20) for m=4 and 

t=2 

III. ADVANCEMENTS IN OLS CODES 

An extended method in OLS codes have been proposed to 

protect the large number of data blocks without changing 

parity bits. For example, OLS code with m=4, t=2 will have 

we have k=16 data bits. For same m=4, t=2, k=20 data bits 

have been proposed in [6]. In both the cases parity bits 

2tm=16 are same, but the number of data bits increased by 4. 

Extended parity check matrix with same of parity bits is 

shown in Fig. 6. Design of encoder and decoder will be same 

but the input of encoder will increase by one number. 

TABLE.2. Extended DEC-OLS Parameters 

KOLS KExtended n-k m 

16 20 16 4 
64 72 32 8 

256 336 64 16 

OLS codes are being studied to protect memories against 

MCUs. For 32 bit data it is not possible to implement OLS 

codes as data bits are defined by k=m
2 
and 32 is not a perfect 

square. In [1] it was proposed to reduce the (77, 49) OLS code 

to (60,32) OLS code. And extended (55, 32) OLS code was 

proposed for 32- data bits in [7]. Extended OLS codes for 32- 

bit data block (54, 32), (53, 32) are discussed and decoder 

was modified accordingly [16]. 

Reduction of parity bits is the prominent problem to work 

with OLS codes. A new scheme was developed in this aspect 

[2]. A self – checking encoder and syndrome generator was 

designed in [9]. In this method two additional bits are 

generated with XOR of selected parity bits at encoder and the 

same was verified at syndrome computation of the receiver 

for S and t=1. Parity prediction in this scheme was proposed 

as 
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r1 = s1 ⊕ s2 ⊕ s3 ⊕   ….      ⊕   s2tm  

  r2 = c1 ⊕ c2 ⊕ c3  ⊕     . . . .        ⊕     c2tm  

 

 
Fig. 7. Syndrome computation for OLSC (24, 16) for 

m=4 and t=1 

{r1, r2} will take the values 11 or 00 for valid inputs and 10 

or 01 for an erroneous input at the checker. 2tm-1 and 4tm-2 

two input XOR gates are required for encoder and syndrome 

computation respectively. Therefore this implementation 

suffers with overhead due to increased number of XOR gates 

compared to [1][2][6]. 

At encoder Oenc =  

Syndrome computation Osyn =  

Overhead of encoder and syndrome for (24,16) OLS code 

is 29.17% and 43.75 respectively, which are less when 

compared other error correction codes [9]. 

IV. COMPARATIVE STUDY OF ECC’S & RESULTS 

This section illustrates the synthesis reports of error 

correction codes. Parameters such as Area, Delay, and Power 

are compared for recent developments in ECCs. In Encoder 

and Decoder designs of OLS codes delay was optimized at a 

great level when compared to Area and power. Area and 

Delay were optimized in OLS codes when compared to 

conventional ECCS. 16 and 32 bit data bits were compared 

here because the conventional codes are not flexible to 

implement for larger data block sizes. Encoders and Decoders 

are included as a part of memory design to correct the data 

while reading the information from it because memories are 

not an exception from error.  

TABLE.3.   Parameters comparison of Conventional Codes 

  

                 

TABLE.4.   Parameters comparison of synthesized OLS encoders and decoders (16-bit) 

Advancements of 16-bit OLS-MLD codes 

Area (µm
2
) Delay (ns) Power (mW) 

Encode
r 

Decode
r 

Encode
r 

Decode
r 

Encode
r 

Decode
r 

OLS (32,16) Area optimized   
[2] 

- 775 - 1.82 - 1.48 

Delay optimized encoder 700 - 0.28 - 0.34 - 

Delay optimized decoder - 1738 - 0.71 - 2.08 

OLS codes  

[6] 
299 921 0.17 0.36 - - 

DEC OLS Extended codes (20 bits) 382 1097 0.20 0.38 - - 

OS-MLD  

[8] 
- 2852.04 - 0.36 - - 

Modified OS-MLD - 3122.99 - 0.51 - - 

Standard OLS DEC (32,16)   

[10
] 

- 1198 - 0.35 - - 

Proposed OLS-SEFI plus SEU 
(32,16) 

- 3649 - 0.57 - - 

Unprotected OLS codes   

[9] 
184.6 237.7 1.26 1.32 - - 

With CED 236.2 344.1 1.65 1.75 - - 

TABLE.5.   Parameters comparison of synthesized OLS encoders and decoders (32-bit) 

Advancements of 32-bit OLS-MLD codes 

Area (µm
2
) Delay (ns) Power (mW) 

Encode
r 

Decode
r 

Encode
r 

Decode
r 

Encode
r 

Decode
r 

For 
(t=2
) 

OLS (60,32)   
 

[7] 

970.8 4408.8 0.34 0.77 0.56 6.16 

Proposed (55,32)  1016.4 3884.0 0.34 0.77 0.60 5.71 

For 
(t=3
) 

OLS (76, 32) 1417.6 6674.0 0.36 0.77 0.81 8.94 

Proposed (68, 32) 1445.6 6388.8 0.36 0.77 0.85 8.94 

 

 

  

 

 

 

Conventional Error Correcting 
Codes 

Area 
(µm

2
) 

Delay (ns) 

16 - 
bit 

SEC_DEC_ BCH  
 

[4] 

4257.2 3.38 

DEC_ BCH 13606 5.30 

32 - 
bit 

SEC_DEC_ BCH 7975.2 3.54 

DEC_ BCH 57954.4 6.14 
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CONCLUSION 

This paper has presented recent advancements of ECCs. 

Today technology has scaled below 20nm and the reduced 

spacing in the logic circuit causes soft errors due to internal 

radiation.  Memories (SRAM) are not an exception from these 

soft errors. Design of powerful ECCs is the only solution for 

this problem. Multiple bit upsets (MBUs) are gradually 

increasing due to scaling of the technology. Earlier codes like 

Hamming code, BCH code, Golay code, Reed Solmon codes 

couldn‟t address recent problems due to their decoding 

complexity and limited data block size. Triple adjacent errors, 

single byte errors… etc. MBUs have increased gradually. 

This created a necessity to develop more efficient ECCs. . In 

this scenario, OLS codes created a wide range of opportunity 

to develop error correction codes for MBUs.  

OLS codes with their modular construction and 

Expandable data block size contributed much in development 

of effective ECCs. Recent developments of OLS-MLD codes 

are described in this letter. At the cost of parity bits OLSC 

reduces the delay in decoding. Advancements has shown the 

possibility to control the parity bits. By reducing the parity 

bits and with flexibility of data block size OLS codes are 

efficient to design effective error correcting codes.  
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