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The Discrete Rational Cubic Spline Interpolator 
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Abstract: The problem of Discrete C2 Rational Cubic Spline has 
been proposed and Error bound obtained.  The Discrete Rational 
Method have unique representation. 
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I. INTRODUCTION 

Rational Cubic spline with one free  parameter useful to 

obtained positive and convex curve from positive and convex 
data respectfully. discrete spline obtained by using 
differences in place of derivative . Rana and Dubey [3] 
constructed discrete cubic spline. Duen [4] study of rational 
interpolation with functional values .To find design and  
shape of curve rational and discrete rational cubic spline are 
applicable So many author studies for shape preservation of 
curve ( see [6], [7], [8] ,[9] [10],).  Rational discrete cubic 
spline preserve convexity and positivity but simple spline not 
preserve both.  Duan et.al. [4]have found shape of  curves by 
using rational spline  and obtained condition that curves lie  
to  above, blow or between the straight lines . In this paper 
authors assumed suitable values of parameters to obtain C2 
Conversion Curve and the scheme work for uniform mesh. 
Hussain et.al. [5] investigate a rational cubic function which 
was used to achieve designs for shape data. They found 
relation on free parameters in the description of C1 rational 
cubic function to obtain desire shapes of the data. In this 
paper we have using different values of free parameter to 
obtained curves for uniform and non uniform case. We have 
developed discrete rational cubic spline with  one free 
parameter   

Remark 1.1 

(i) When 0→ih , we may obtained C2 rational cubic 

spline with two parameters this gives particular 
case. M.Z. Hussain et.al. [5]. 

 (ii) Sarfaraz [6], Abbas [7], Duan [4] and Bao [9] error 
bound obtained by sub interval in our paper error 
bounds obtain one time full interval [0, 1]. 

(iii) Error bound obtained in our paper is very accurate 
and minimum but other paper error bound get 
maximum inaccurate. 
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(iv) When differences is given then our scheme is beneficial 
but Broadlieand Butt[11] Abbas et.al [7].Sarfaraze et.al 
[6].and so many paper methods are not useful. 

II. C2 DISCRETE RATIONAL CUBIC FUNCTION  

Now s(x) is defined as 
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 Where is the shape parameter  used to control the shape 

of the interpolation and Let the second differences 

with respect to x and di = Dh
(1)s(xi) denote first differences 

value at knots x, then C2 splining constrains :  
 

 ( ) 11;)( ++ == iiii fxsfxs  

 ( ) ( ) 11
)1()1( , ++ == iihiih dxfDdxfD  

 ( ) ( ) 1,......2,1,)2()2( −=−=+ nixDxD inih  
(2.3) 

 
Where Dh

(1)(x) = {f(x+h) – f(x-h) }/2h,    Dh
(2)f(x) = [ f(x+h) 

-2f(x) + f(x-h)]/h2. 
 

Using continuity of second derivative we get  
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 Where Different parameter di 

and 1−id  determinate by end conditions. 

 
 Since the system of linear equation is diagonally 
dominant for all , it has a unique solution for the 
difference parameters dis. We can find solution of above 
equation. 
Remark 2.1: When ,the Rational Discrete cubic 
spline reduce to rational cubic spline. 
Remark 2.2: Without shape parameter when so the 
rational discrete cubic spline reduce to discrete cubic spline. 

III. POSITIVITY OF RATIONAL DISCRETE CUBIC 

SPLINE FUNCTION 

 Let 

  nii xxxnifx = ......,,......2,1,, 21 and

0.......0,0 21  nfff  it is required to construct a 

positive interpolant )(xs . The rational discrete cubic 

function (1) is positive if ( )ip and ( )iq both positive, 

since . 
 

Now ( )ip  can be rewritten as follows: 

( ) iiii dcbap +++=  23
1 . 

Where 

3201 wwwwai +−−=  

10 23 wwbi −=  

2103 wwwci ++−=  

0wdi = . 

So iiii dcba +++
        (....3.1)

 

013 == +ii fvw .        (...3.4) 

Theorem 3.1: 
The C2 Rational Discrete Cubic function (1.1) is positive in 

each interval  1, +ii xx if the shape parameter satisfy 

following constraints 
vi>0 
andw3=vifi+1>0. 
 
 

IV. ERROR BOUNDS 

For a given , we introduce the set 

and define a discrete 
interval as follows: 

    hah Rbaba = ,,  

For a function f and three disjoint points x1, x2, x3 in its 
domain. The first and second divided differences are defined 
by 
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Now  we write )2(f for fDh
)2(

and  the modulus of 

continuity of f is   ( )pfw , . 

And  
 

( )xff
hbax ,

max||||


= discrete norms of a function f 

over the interval  hba,  

 To obtained error bound we have to state following  
Theorem 4.1: 
 Let s(x, h )be the unique periodic discrete Rational  cubic 
spline interpolant f under the assumption of condition (2.3) . 
Then over the discrete interval  hba, . 

 ( ) ( ) ( )pfDwhkpxe h ,|||| )1(
      

 (....4.1)
 

 Where k(h) is some function of h defined earlier and w (f, 
p) is the discrete modules of the continuity of f. 
 In order to show the convergence of the discrete rational 
spline. We shall need the following Lemma due to Lyche 
[12]. 

Lemma 4.1 : Let  m
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1=

and  n
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non negative real number such  
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. Then for any 

real valued function f, defined on a discrete interval [0, 1] we 
have 
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Where xjk, for rational values of j, k. Replacing 

mi by )()1(
ih xeD in Equation (2.4). 

We have 
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  After using from Lyche [12] formula we get, 
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 Where  hxx i +=10  

  ixx =20  

  hxx +=30  

 Where hxyx i +== +13010  

  hxyx i −== 3111  

  hxxy i +== 2020  

  hxxy i −== 2121  

  hxyx i +== −− 10130  

  hxyx i 11131 −==  

 and

  

 

 
 

   

  

 

 
  . 

 Clearly ( )  == jj bahk .    (.....4.4) 

This theorem (4.1) is completed. 

V. CONCLUSION 

we have investigate method of Discrete Rational cubic Spline 
Interpolations to obtain construction, Shape, error bound and 
convergence. 

Table 1. Given Data 

i 1 2 3 4 5 6 7 8 9 10 11 

xi −1 4 8 16 20 24 28 32 36 40 44 

yi 18 3 0.05 1 4 8 15 24 34 40 43 

 

 
Figure 2: Rational cubic function 

 

 
Figure 3. C2 rational cubic curve with constant 

parameter 
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Figure 4. C2 convex rational cubic curve  
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