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Complex Method on Octagonal Number

S. Sudha, A. Gnanam

Abstract: In Number theory Study of polygonal numbers is
rich in varity. In this paper we establish a Complex Octagonal
Number using Continued Fraction algorithm.
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I INTRODUCTION

A Simple continued fraction [1] is an expression of the
form

b
a, + 0

a; + by 5

a; + _2
Where the a; are a possibly infinite sequence of integers
such that a, is non-negative and the rest of the sequence is
positive. We write {a;; a, as ... ... ) . The above fraction
also calls them Regular continued fractions.

1. CONTINUED FRACTION ALGORITHM

Suppose we wish to find continued fraction expansion[2]
of x €R.
Let x, € x and set ay = [x,],

Define x; = and seta; = [x;]and x, =

xp—[xo] x1
a, = [XZ] e X = x_— = aq = [xk]

: . k-1 =Dxie] - :
This process is continued infinitely or to some finite stage till
an x; € N exists such that a; = [x;].

=
—[x1]

1. OCTAGONAL NUMBER

A. Definition: Centered Octagonal Number|[3]
The Number 1,9,25,49,81,121,........ are called centered
octagonal numbers. The number that represents associate
in nursing polygonal shape with a dot within the center
and every one dots different dots encompassing the middle
dot in associate in nursing polygonal shape lattice .

The nt" centered octagonal number is given by the
formula
0,=4n(n—-1)+1
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B. Theorem:
Forn = 3,

0, o
n +i n+2

0n+3
n n+1
0;1, [E],Sn) +i(0;1, [—2 ],B(n +2)) whennis odd
n+2)
2

{(0; 1,; -1,1,1,2n—1,2) +i(0; 1, -1,1,1,2(n+2) — 1,2) when n is even
Proof:
Case (i):- nis odd

Letn=2k-1, Where3<k <n
Then
Ozk-1
O,

2k—1
—| 82k -1y
+i(0; 1, [k],8(2k + 1))
Next we have to prove that n = 2k+1
To find the continued fraction of
02k+1 i02k+3

Ozkc+1
+i——=(0;1, [
Ozkc+2

02k+2 02k+4—

A. Real Part:-[3]

Oy _ 42k + D@k +1-1)+1
Osisz  4Qk+2)Rk+2-1)+1
_ 16k2+8k+1
T 16k2+2k+9
_ 16k%+8k+1 —0
0 ™ 16k2+2k+9 * 0
16k+8
xn =1+ Tok2igkrr M = 1
1
Sk+——=2a, =k
2=t ekvs @
x; = 16k + 8 = a; = 16k + 8
=8(2k+1)
0
=2 — (01, k, 8(2k + 1))
Oz 42

B. Imaginary part:-

42k +3)2k+3-1) +1

4k +4)2k+4-1) +1

_ 4[4k%+6k—2k+6k+9—-3]+1
" 4[4k2+8k -2k +8k+16—4]+1
_ 4[4k +4k+6k+6]+1

T 4[4k2+14k+12]+1

_ 4[4k%+10k+6]+1

T 4[4k2+14k+12]+1

_ 16k%+40k+24+1

T 16k2+56k+48+1
16k% + 40k + 25

Ozi+s  16k? + 56k + 49
_ 16k2+40k+25

02k+3

02k+4—

02k+3

= ;ag =0
0 ™ 16k2+56k+49 * O
Then
X 16k2+56k+49 _ 6kt24 o _ 4
17 16k2+40k+25 16k 2+40k+25 1=
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16k?* + 40k + 25

=+ 1)+———
22 T ek + 24 k+D+1er 722~ @
—(k+1)
16k + 24
Xy = = = 16k + 24
= 8(2k + 3)
0
=2 — (051, (k + 1),8(2k + 3))
02444

02k+1 . 02k+3
==
O2k42 02k 14
=(0; 1,k,8(2k + 1))
+i(0;1, (k+1),8(2k
+3))
By the results is true for all values of n when n is odd.
Case (ii):- n is even

Letn=2k-2
Then
O, 0 2k —
L P (! —1,11,2(2k — 2)
02k—1 02k+2
-1,2)
2k—2+2
+i(0;1,—————1,1,1,2(2k — 2)
-1,2)

=(0;1,k—-21,12Q2k-2) —
1,2+00,1,k—1,1,1,224—2-1,2

Next we have to prove that n = 2k
To find the continued fraction of
0 0
2k +i 2k+2
02k+1 02k+3
C. Real Part:-[3]

0)
2 = (0; 1,k - 1,1,1,4k — 1,2)
02k 11 )
D. Imaginary part:-
Oziv2 4R2k+2)2k+2-1)+1
O43  4QRk+3)2k+3-1)+1
_ 4[4k 242k +4k+2]+1
T 4[4k 2+4k+6k+6]+1
_ 4[4k +6k+2]+1
T 4[4k2+10k+6]+1
_ 16k%+24k+8+1

T 16k2+40k+24+1
16k? + 24k +9

~ 16kZ + 40k + 25
Ozesz  16k% +24k+9

=
O3  16k? + 40k + 25
16k 2+24k+9

X0 = Toxzraoktzs * F0 T 0
Then
16k2+40k+25 _ 16k+16 -1
1= Terrr2akto TokZizakto 1=
=>16k2+24k+9_ N 8k+9 w1k
%2 16k + “ T ek +16 27T
lok+16_~  8k+7
X7 T8k +9 Bk+9 BT

2
8k+7 +8k+7:>a14 !
02k+2

. = (0;1,k,1,1,4k + 3,2))
02k+3
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Since

0 0
2k i ZEHZ 01,k — 1,1,1,4k — 1,2)

02k+1 02k+3
+i(0; 1,k,1,1,4k + 3,2))
Hence by the result is true for all value of n where n is
even.
Since case (i) & case (ii) for each n = 3, the continued
fraction expansion of

On i On +2

0n+1 0n+3
n n+1
{ 0; 1, [E],Sn) +i(0;1, [—2 ],S(n + 2)) when n is odd

n+2)
2

n
(0; 1,5 -1,1,1,2n—1,2) +i(0; 1, —-1,1,1,2(n+ 2) — 1,2) when n is even

V. ILLUSTRATION

Let n =3,

0, 0;_25 81
0, "0, T 29" 121
A. Real Part:-[3]

0_3 25

=—,s0a,=0
04 49
25
" Xy = 0
Th —_— 49 1 +2 1
— = — = a4 =
en xl xo - [xo] 25 25 al
1 25 1
X, i 1+Z=>a2 =1
1 24
Xy= = =T =24>0a;=24
LB (0;1,1,24)
b 49 - )y L4y
B. Imaginary Part:-
05 81
—_—=—, aO = 0
0¢ 121
81
en
_ 1 _121_1_|_40=> 1
M —] 8L el M7
= ! _81_ 2+ ! >a,=2
S ~lel 7407740 “ =
X3 =———=—=40=a; =40
81 x— ] 1
m = (0, 1,2,40)
Hence
25 | .81 _ o .
ot = (0; 1,1,24) + i(0; 1,2,40)
V. ILLUSTRATION
Putn=4
0, .0, 49 121

0, ‘0, 781" 169
A. Real Part:-[3]

O —49:<0-111172)
05 _81 »y LHLH4LH 4L
B. Imaginary part:-
0; 121
0, 169

Let x, = 2
Then
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1_x0_[x0]—a— +E3a1—1
1 121 a4 25 5
= = —= 4 =
X~ k] 48 48~ ©
! 28 1+ 1
= = —= = =
x3 xz - [xz] 25 25 a3
1 25 14 2 1
= — = —_— =
x4 X3 - [x3] 23 23 a4
—1 23 11+ ! 11
] = —= - =
T ] 2 27 %
! 2 2
= —= = =
¥ x5 — [xs] “
121—(0 1,2,1,1,11,2)
- 169 - e L R ] )
Since
49 121
81" '169
=(0;1,1,1,1,7,2)

+i(0;1,2,1,1,11,2)

VI. CONCLUSION

In this paper we have identified complex octagonal
number using continued fractions.
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