
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

122

Retrieval Number: D10141284S519 /2019©BEIESP

DOI:10.35940/ijrte.D1014.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

CSFC: A New Centroid Based Clustering Method

to Improve the Efficiency of Storing and Accessing

Small Files in Hadoop

R. Rathidevi, R. Parameswari

Abstract: In day to day life, the computer plays a major

role, due to this advancement of technology collection of

data from various fields are increasing. A large amount of

data is produced by various fields for every second and is

not easy to process. This large amount of data is called as

Big data. A large number of small files also considered as

Big data. It's not easy to process and store the small files

in Hadoop. In the existing methods Merging technologies

and Clustering Techniques are used to combine smaller files

to large files up to 128 MB before sending it to HDFS in

Hadoop. In the Proposed system CSFC (Clustering Small

Files based on Centroid) Clustering Technique is used

without mentioning the number of Clusters previously

because if the clusters are mentioned before, all the files

are clubbed within the limited number of clusters. In

proposing system clusters are generated by depending on the

number of related files in the dataset. The relevant files are

combined up to 128 MB in a cluster. If any file is not

relevant to the existing cluster or if the memory size

reached 128MB then-new cluster will be generated and the

file will be stored. It is easy to process the related files,

comparing two irrelevant files. By using this method

fetching data from the data node, it produces efficient result

when comparing with other clustering techniques.

Keywords : Datanode, Hadoop Distribuited File System,

Hadoop, Namenode

I. INTRODUCTION

Big data can be categorized as the huge volume of

data that goes beyond traditional tools, systems or

process ' handling capabilities. It is a requirement for

an organization that manages such data to establish

techniques and architectures to tackle this huge data

with the generation of this big data at such a rapid

pace.

A. Hadoop

Apache Hadoop is an open-source software platform

that uses a single programming model to spread large

data sets through commodity computer clusters.[1] It is

used to develop applications for data processing that

are executed in a distributed computing environment.

HADOOP-built applications operate on large data sets

spread through commodity computer clusters.

Revised Manuscript Received on December 5, 2019.

R. Rathidevi, Research Scholar, Department of Computer

Science, Vels Institute of Science, Technology & Advanced Studies,

Chennai 600 043, India. rathirajsuresh@gmail.com

Dr. R. Parameswari, Associate Professor, Department of

Computer Science, Vels Institute of Science, Technology & Advanced

Studies, Chennai 600043, India dr.r.parameswari16@gmail.com

Commodity computers are ubiquitous and

inexpensive. These are primarily useful for achieving

greater low-cost computing power. Large data sets mean

the data will be stored in Tera bytes or Peta bytes.

Commodity computers do not require a high-quality

machine, i.e. a single programming model. The program

is divided into many small fragments of work in

MapReduce, each of which can run or re-execute on

any node in the cluster. It has two frameworks HDFS,

and Map reduce.

B. HDFS Framework

 HDFS works efficiently with large files while

comparing with small files. It contains two categories

of nodes,ne Name node and multiple data nodes, which

is in the form of Master-slave architecture. The name

node holds the metadata of each file which is going to

store in the data node. Every block in data node can

hold 128 MB of data. Small files are not up to

128MB in size, It may be 10 KB, 20KB, like soon.

[2] If each small hold a single block in the data node,

then it occupies 150 bytes of memory space in the

Name node to hold the metadata. If the number of

files increased then the number of blocks in the data

node is utilized more

To store all the information like File folder, path,

block number block location. Number of frames and

slave related configuration of all the data sets in

Hadoop cluster. That is, it actually knows where what

data is stored. This metadata is stored in memory for

quicker retrieval to minimize latency due to disk

searches. Data Node is a daemon (a system running in

the background) operating in the Hadoop Cluster on

the' Slave Node In the HDFS, blocks are split in small

chunks default size of 128MB. Such data frames are

stored on the node of the slave. The real data is stored

in it, Therefore, it occupies large number of disks to

store data. The datanode performs read and write

operations on disks.

mailto:rathirajsuresh@gmail.com
mailto:dr.r.parameswari16@gmail.com

CSFC: A New Centroid Based Clustering Method to Improve the Efficiency of Storing and Accessing Small Files in

Hadoop

123

Retrieval Number: D10141284S519 /2019©BEIESP

DOI:10.35940/ijrte.D1014.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

.Fig. 1 : HDFS Architecture

C. Map Reduce Framework

Map Reduce is Hadoop's core component for data

processing. Hadoop Map Reduce is an easy-to-write a

software application that processes the large amount of

structured and unstructured data stored in the Hadoop

Distributed File System (HDFS). MapReduce works by

splitting data into two phases: Map phase and Reduce

phase. MapReduce is an application-writing

computational method and computer platform running

on Hadoop. Such MapReduce programs can process

massive data on large clusters of computing nodes in

parallel.

D. Small files problem in Hadoop

A large number of small files are stored in Hadoop

will occupy Namenode memory separately for holding

the metadata. The size of Namenode is limited, suppose

if 1 million of small files want to store means, then for

each file 150 bytes of memory allocated separately in

Name node and moreover single block in data node

also allocated separately for each and every small file.

Data node stores every file redundantly 3 times for

security purpose. So accessing files from datanode takes

more time due to the large number of blocks occupied

in datanode.

If we want access a file first we have to refer

HDFS name node for metadata. In name node no

difference of memory allocation for small files and big

file, while accessing small file we need to access the

name node frequently, because each and every small

files are stored in separate data nodes. So it takes

much time.

E. Clustering

Clustering is the method of splitting the entire data

into groups based on some similarity of data. This is

another famous clustering application. Multiple

documents and you need to bring together related

documents. Clustering allows us to organize these

documents into the same clusters.

II. THE RELATED WORK

To solve small file problem in Hadoop,Small files

are merged by using some techniques and then they are

processed to produce good results in accessing the files.

[1]Sequence File System. Sequence File is a binary

file system provided by Hadoop . It is possible to store

the multiple small files in a unified manner. A

sequence of binary key / value is composed of its data

structure. The name of the file is called the value of

key, and the result of the file is called the value

,separated by the operation of the MapReduce block

and independent storage. It merges a large amount of

small files[2] Hadoop Archive is a tool used to archive

the small files in HDFS, Which reduces the utilization

of Name node memory. In this Archive technique once

HAR file created it cannot be modified, addition and

deletion of files are not possible in HAR file. Have to

recreate the HAR file again, so it’s not easy to use this

method.[3] Vorapongkitipun et al proposed two ways to

improve HDFS and HAR. Fundamental changes are

made first to Hadoop HAR's indexing mechanism.

[1]HAR uses 2-level indexed files to keep track of the

files stored in the data nodes ' physical storage

locations. The paper suggested a transition to a single

index file with several partitions from a 2-level

indexing technique

Passent M ElKafrawy et.al[4] proposed method is

compared by using the two simulation tool kits with

the initial HDFS. The cluster's output was calculated

using two parameters first the amount of main memory

that name node uses to write and the use of name

node memory to store metadata. Secondly, the number

of requests and the time taken to evaluate the name

node overhead and the SPOF problem Merging

technique is used to reduce the size of small files to

reduce the name node memory consumption in an

efficient manner. The metadata is stored in the form of

Indexed linear file with hashing technique. While

accessing the small files index file is used to access

the particular file. Mohd Abdul Ahadet.al[5][6]proposed

a method DM-sfs (Dynamic Merging based Small Files

Storage) . In this method all the small are categorized

based on the size and the they are combined based on

the type of files. Merged files are stored in Name node

and then they are processed.In that method the block

are not utilized up to its level.

The revised version of HAR called "NHAR" [7]to

improve the use of metadata by memory and to

provide space for files to be added to existing HAR.

"Hadoop Archive (HAR)" combines in a single large

unit the multiple small files. The resulting big archive

consists of an index file and the small initial data.

HAR's main drawback is that it does not allow file

attachments.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

124

Retrieval Number: D10141284S519 /2019©BEIESP

DOI:10.35940/ijrte.D1014.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Ahad, Mohd Abdul, and Biswas, Ranjit[7] in their

proposed method they created methods to handle a

large number of small files efficiently. First, they

analyze the size of each file by using a file size

analyzer algorithm and then the File type analyzer

algorithm is used to combine files based on its type of

dynamic merging strategy. Then the merged files are

encrypted for security purpose, and then it’s sent to

HDFS. In this merging system files are arranged

according to its size and then they are merged to

overcome this step in our proposed system clustering

technique is used to combine the related files using

centroid.

Hooda, Hanu, Nandal, Rainu [9] in their proposed

work k-means algorithm is to cluster the related files.

In k-means algorithm cluster should be declared while

starting the clustering technique after that centroid point

is identified,then data sets are added which is close to

centroid. In that, all the files are clustered within that

predefined number of clusters, but we are not sure that

all the data sets are related to each other and they are

fit within that predefined number of clusters to

overcome this problem CSFC algorithm is generated.

III. THE PROPOSED WORK: CLUSTERING

SMALL FILES BASED ON CENTROID (CSFC)

The CSFC clustering technique: CSFC (Clustering

Small files based on centroids): In the proposed system

The huge number of small files is combined before

sending it to the HDFS.

The combining technique is carried out by clustering

CSFC based on the type of file and they are combined

up to 128 MB of size because the block size is

128MB. If the file size is more than 128MB that will

not create a problem because large files can be handled

efficiently in Hadoop, but to keep the metadata

efficiently the small files are combin ed up to 128 MB

as large file.

A. Text file converter:

This is responsible for identifying the file type. If

the file type is text, then it is converted to numerical

format of data for clustering the data are converted to

numerical values to find the centroid value.

Fig 2. Architecture of CSFC Approach

B. File cluster

By using the CSFC clustering algorithm the files are

combined by using the centroid randomly and clusters

are generated, Membership matrix is used to update the

centroid for the number of times to get the cluster

result same after many iterations. The cluster size will

be checked before adding a file to an existing cluster,

if the cluster size less than 128 then that file will be

added otherwise new cluster will be generated. In this

algorithm number of clusters is not predefined because

in CSFC clusters generated based on the related files

by using the centroid. The files are stored in the form

of a Sequence File (key-value pair) in order of their

sizes in the newly

partitioned memory block.

CSFC: A New Centroid Based Clustering Method to Improve the Efficiency of Storing and Accessing Small Files in

Hadoop

125

Retrieval Number: D10141284S519 /2019©BEIESP

DOI:10.35940/ijrte.D1014.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Contiguous memory block allocation to the individual

files in the SequenceFile minimizes internal

fragmentation. Nonetheless, the Sequence File's last

block will be slightly unused (in some cases) which

may be ignored in view of the performance

improvements of the proposed solution. The

SequenceFile is then translated to a MapFile and

transferred to the encoding module.

C. Working on CSFC Approach

It gets input from the client and then it is pre-

processed to check whether the data is in numerical

data or text file, If it is text file then it converted to

numerical data, then the data is combined by using

CSFC approach.

Converting text files to numerical data set:

 Input file

 Check the file type

 If file type is text then

 For every column in table do

 Assign initial value of=0

 For every row in column i do

 Calculate Val=val+ data [i] [j]

 Calculate average =val/len(data)

 Result=append(val)

 Forward the converted numerical dataset to

CSFC Algorithm.

In the proposed algorithm It calculates the membership

matrix for all the Filesets and then randomly center points

are chosen . Based on the data difference ratio between the

center and file, they are combined and the cluster will be

generated . The number of clusters is not pre-defined in this

algorithm. Depending upon the types of files and size of

file’s clusters are generated.

CSFC Algorithm

 Calculate membership matrix

 For every data value in file do

 Assign Random number list= random (data

values in every column)

 Generate average for random number list as

member ship_mat

 Assign curr=0

 Repeat

 Calculate cluster centers

 Calculate Membership Matrix

 Increment curr

 Until Curr<= Maximum iteration

 If cluster size is less than 128 MB

 Add files into clusters

 Else, generate new cluster

The generated clusters are sent to name node for

storing the metadata. In data node it maintains details

of files stored in each block of data node for easy

access. In data node files are stored redundantly minimum

three times in the rack for security purpose.

Number of Clusters

k = 0

Maximum number of iterations

MAX_ITER = 20

Number of data points

n = len(df)

Fuzzy parameter

m = 2.00

df_full = pd.read_csv("tinput.csv")

columns = list(df_full.columns)

features = columns[:len(columns)-1]

class_labels = list(df_full[columns[-1]])

df = df_full[features]

In the above coding the number of clusters are not

predefined so depending upon the file type the files are

clustered and if it exceeds the size 128MB then-new

cluster will be generated. So all files in clusters are

related one and they are easily fetched from the data

node efficiently..

D. DDR comparison

Table I: Data Difference Ratio between various algorithms.

Data Difference ratio: It represents the data difference

ratio values between each file and centroid value in the

cluster. A centroid is chosen randomly from the existing

dataset and then other data sets are placed based on

that centroid in the cluster. This is repeated for the

maximum number of iterations to get the same result

without any change. Data difference the average of a

difference value between the centroid and data set.

Algorithm Average of DDR Time taken in nanoseconds No. of Clusters

CSFC 2.328947368 2.5066853 3

k-means 2.374774775 4.9157381 2

Merging Algorithm 27.0201386 18.6666536 3

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

126

Retrieval Number: D10141284S519 /2019©BEIESP

DOI:10.35940/ijrte.D1014.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig 3. Average of DDR value X-axis - Algorithms ,y-

axis- values to show the average.

Comparatively it is less in CSFC algorithm than K-

means and Merging algorithm.It represents how the

files are related to each other. In CSFC the cluster size

also represented to 128MB. If the size exceeds the

128MB then immediately new cluster will be formed.

If the DDR value decreases it increased the relationship

between the data sets. Clustering time represents the

time taken for generating clusters by various approaches

in Nano seconds.If the time decreases then

automatically processing speed increases. In DDR value

and Time consumption our proposed CSFC is the

efficient way compared with other algorithms. Totally

922 data sets are used with various file sizes from

1KB to 50MB. Number of files in the cluster will be

different from algorithm to algorithm. The DDR value

represents the related data sets because of that data set

will be accessed easily without going number of

searches in datanode.

Fig 4. X-axis time in nano seconds, Y-axis Algorithms

Time consumption for generating clusters for small files

using various approaches.in nano seconds. CSFC and

Merging algorithm generates three clusters, K-means

algorithm generates two clusters but the Data Difference

value is comparatively more so its not much efficient when

comparing with other algorithms

IV. CONCLUSION:

In advancement of technologies, data are generated in

large number, but all the generated data are not large

in size. For each and every second data are generated

IOT devices using sensors. Handling this type of small

files in Hadoop hasn’t been easy to overcome this

problem we developed a Clustering technique CSFC. In

this approach the file types are identified and they are

clustered up to 128 MB in each cluster if the files are

related ,otherwise new cluster will be generated. In this

approach clusters are not predefined because of this the

data are not clubbed in limited clusters. The related

files are combined, if they are not related new cluster

will be generated so it is easy to store and access the

files in data node easily. The usage of Name node

memory is reduced effectively by clustering and they

are stored and easily because of related files in the data

nodes. The execution time also reduced effectively with

this approach when compared with existing work. In

future enhancement this approach should be

implemented for images and videos and for performing

real time data analytics. In future work combined files

are encrypted and send to datanode for storing the

data.

REFERENCES

1. A. Mehmood, M. Usman, W. Mehmood, and Y. Khaliq,

“Performance efficiency in Hadoop for storing and accessing

small files,” 7th Int. Conf. Innov. Comput. Technol. INTECH

2017, no. Intech, pp. 211–216, 2017.

2. W. Cheng, M. Zhou, B. Tong, and J. Zhu, “Optimizing small file

storage process of the HDFS which based on the indexing

mechanism,” 2017 2nd IEEE Int. Conf. Cloud Comput. Big Data

Anal. ICCCBDA 2017, pp. 44–48, 2017.

3. W. Tao, Y. Zhai, and J. Tchaye-Kondi, “LHF: A new archive

based approach to accelerate massive small files access

performance in HDFS,” Proc. - 5th IEEE Int. Conf. Big Data

Serv. Appl. BigDataService 2019, Work. Big Data Water Resour.

Environ. Hydraul. Eng. Work. Medical, Heal. Using Big Data

Technol., pp. 40–48, 2019.

4. K. Bok, J. Lim, H. Oh, and J. Yoo, “An efficient cache

management scheme for accessing small files in Distributed File

Systems,” 2017 IEEE Int. Conf. Big Data Smart Comput.

BigComp 2017, pp. 151–155, 2017.

5. M. A. Ahad and R. Biswas, “Dynamic Merging based Small File

Storage (DM-SFS) Architecture for Efficiently Storing Small Size

Files in Hadoop,” Procedia Comput. Sci., vol. 132, pp. 1626–

1635, 2018.

6. X. Ren, X. Geng, and Y. Zhu, “An Algorithm of Merging Small

Files in HDFS,” 2019 2nd Int. Conf. Artif. Intell. Big Data,

ICAIBD 2019, pp. 24–27, 2019.

7. A. Ahmed Shah and M. C. N, “Improving Hadoop Performance

in Handling Small Files.”

8. H. Hooda and R. Nandal, “Implementation of k-Means Clustering

Algorithm in CUDA,” Int. J. Enhanc. Res. Manag. Comput.

Appl., vol. 3, no. 9, pp. 829–833, 2014.

9. B. Mao, S. Wu, and H. Jiang, “Improving Storage Availability in

Cloud-of-Clouds with Hybrid Redundant Data Distribution,” Proc.

- 2015 IEEE 29th Int. Parallel Distrib. Process. Symp. IPDPS

2015, pp. 633–642, 2015.

10. R. Rathidevi and R. Parameshwari, “4 th International Conference

on Cyber Security A Systematic Approach for Merging Small

Files in Hadoop using Prolonged HDFS Framework.”

11. B. Gupta, R. Nath, G. Gopal, and K. K, “An Efficient Approach

for Storing and Accessing Small Files with Big Data

Technology,” Int. J. Comput. Appl., vol. 146, no. 1, pp. 36–39,

2016.

 J. N. Zacharias, “Fuzzy C - Means What is Clustering ?”

12. S. Bhandari, “An approach to solve a Small File problem in

Hadoop by using Dynamic Merging and Indexing Scheme,” vol.

5, no. 04, pp. 227–230, 2017.

0

5

10

15

20

25

30

CSFC k-means Merging
Algorithm

Average of DDR

Average of
DDR

0
5

10
15
20

Time taken in
nanoseconds

Time taken in
nanoseconds

CSFC: A New Centroid Based Clustering Method to Improve the Efficiency of Storing and Accessing Small Files in

Hadoop

127

Retrieval Number: D10141284S519 /2019©BEIESP

DOI:10.35940/ijrte.D1014.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

13. J. Chen, D. Wang, L. Fu, and W. Zhao, “An improved small file

processing method for HDFS,” Int. J. Digit. Content Technol. its

Appl., vol. 6, no. 20, pp. 296–304, 2012.

14. R. Rathidevi and S. Srinivasan, “Small files problem in Hadoop -

A Survey,” Int. J. Pure Appl. Math., vol. 119, no. 15 Special

Issue B, pp. 2833–2841, 2018.

15. A. N. Approach, T. Undestand, S. Files, and P. In, “A Review

on Small Files in HADOOP,” no. 5, pp. 6585–6588, 2017.

16. Deepika, “An Optimized Approach for Processing Small Files in

HDFS,” Int. J. Sci. Res., vol. 6, no. 6, pp. 402–405, 2017.

17. R. Thangaselvi, S. Ananthbabu, S. Jagadeesh, and R. Aruna,

“Improving the efficiency of MapReduce scheduling algorithm in

Hadoop,” Proc. 2015 Int. Conf. Appl. Theor. Comput. Commun.

Technol. iCATccT 2015, pp. 63–68, 2016.

18. Y. Fan, Y. Wang, and M. Ye, “An improved small file storage

strategy in ceph file system,” Proc. - 14th Int. Conf. Comput.

Intell. Secur. CIS 2018, pp. 488–491, 2018.

19. P. V. Subba Reddy, “Fuzzy mapreduce data mining algorithms,”

iFUZZY 2018 - 2018 Int. Conf. Fuzzy Theory Its Appl., pp. 304–

310, 2018.

20. E. Alshammari, G. Al-Naymat, and A. Hadi, “A New Technique

for File Carving on Hadoop Ecosystem,” Proc. - 2017 Int. Conf.

New Trends Comput. Sci. ICTCS 2017, vol. 2018-Janua, pp. 72–

77, 2017.

21. C. K. Leung, C. S. H. Hoi, A. G. M. Pazdor, B. H. Wodi, and

A. Cuzzocrea, “Privacy-Preserving Frequent Pattern Mining from

Big Uncertain Data,” Proc. - 2018 IEEE Int. Conf. Big Data,

Big Data 2018, pp. 5101–5110, 2019.

22. M. Stratford, “Welcome to Mendeley: Quick Start Guide,” 2018.

23. https://www.google.com/search?q=Mapreduce+content&oq=Mapreduc

e+content+&aqs=chrome..69i57.8567j0j8&sourceid=chrome&ie=UTF

-8

AUTHORS PROFILE

R .Rathidevi, is research scholar at Department of

Computer science, Vels Institute of Science, Technology

and Advanced studies, Chennai. She received her

M.Sc.,(C.S) degree from University of Madras. M.Phil.

from Periyar University, M.Tech. from SRM University.

She has published two papers in International journals.

Her research interest is Big Data Analytics, Cloud computing.

 Dr.R.Parameswari, is working as Associate Professor in

Department of Computer Science, Vels Institute of

Science, Technology and Advanced Studies, Chennai. She

had 13 years of teaching experience. She has completed

Ph.D in Computer science from St.Peter’s University,

Chennai. She is presently guiding 8 Ph.D scholars and 1

M.Phil Scholar. She has produced 3 M.Phil Scholar’s. She has published 26

papers in various International Journals including journals indexed in

Scopus. She has presented many papers in International conferences and

attended many seminars and workshops conducted by various educational

Institutions. She is acting as editor and reviewer in many International

Journals. Her research interest lies in the area of cloud computing. Big data

Analytics, Internet of things.

