
International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019 

 

265 

Retrieval Number: D10551284S519/2019©BEIESP 

DOI:10.35940/ijrte.D1055.1284S519 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  
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Abstract: The quality of the software is a very important 

aspect in the development of software application. In order to 

make sure there is the software of good quality, testing is a 

critical activity of software development. Thus, software testing 

is the activity which focuses on the computation of an attribute 

or the ability of either a system or program that decides if user 

requirements are met. There is a proper strategy for the design of 

software for which testing has to be adopted. The techniques of 

test case selection attempt at reduction of the test cases that need 

to be executed at the same time satisfying the needs of testing 

that has been denoted by the test criteria. In the time of software 

testing, and the resource will be the primary constraints at the 

time of testing since this has been a highly neglected phase in the 

Software Development Life Cycle (SDLC). The optimizing of a 

test suite is very critical for the reduction of the testing phase and 

also the selection of the test cases that eliminate unwanted or 

redundant data. All work in literature will make use of 

techniques of single objective optimization that does not have to 

be efficient as the code coverage will play an important role at 

the time of selection of test case. As the test case choice is 

Non-Deterministic, the work also proposes a novel and 

multi-objective algorithm like the Non-Dominated Sorting 

Genetic Algorithm II (NSGA II) and the Stochastic Diffusion 

Search (SDS) algorithm that makes use of the cost of execution 

and code coverage as its objective function. The results prove a 

faster level of convergence of the algorithm with better coverage 

of code in comparison to the NSGA II. 

 

Index Terms: Multi- Objective Optimization, Non-dominated 

Sorting Genetic Algorithm II (NSGA II) Stochastic Diffusion 

Search (SDS), Software Testing, Test Case Selection. 

I. INTRODUCTION 

Both the verification along with the validation of software 

made by means of dynamic testing which is part of the area of 

such software engineering in which the progress is towards 

the automation which was slow. More particularly, for 

automatic design or also the generation of test data, which is 

generally a manual activity. Even today, there is software 

testing which continues to be the primary technique that is 

used for the purpose of gaining the confidence of customers 

in this software. This testing process of a software system is 

identified to be a major task and this is also very 

time-consuming. Software testing is laborious and about 

50% of the development of software system resources [1].  

Normally, the primary goal of software testing will be the 

designing of a new set of such test cases in a way in which it  

can depict the maximum faults. There are, however, some 

more benefits which are: a test preparation which is done 

well in advance and this will have some test runs that are very  
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fast with the confidence of the testing result that may be 

increased. But, there is also an automation of software testing 

is not a process and is straightforward. For many years, there 

were several researchers that have proposed many methods 

for generation of test data in an automatic manner with 

different methods to develop the generators of test data. The 

technique further supports the automation of software testing 

that may result in a significant level of savings of cost.  

A test that is effective gets dependent on a certain specific 

number of the detailed conditions that were employed in the 

process of software testing. There were some more test cases 

that were the parameters of an input along with some more 

conditions of execution and also their expected results that 

were used for testing. But, there was a set of another set of 

these test cases (called the test suite) that is available to the 

testers that grow in size with the evolving of the needs of the 

software. For the purpose of this scenario, there had been 

another execution of the test suite that may be unfeasible. 

This selection of the test case indicates all approaches that 

have been aimed at the choice of a new subset of test cases. 

The approaches were the key to the definition of all testing 

strategies or their development since they aim at the 

development since they aim at eliminating unwanted or 

redundant data and maximizing fault detection [2].  

The prioritization of the test cases is the choice of test cases 

in the order of priority along with execution with the 

components that will specify the input, the operation and the 

outcome expected to determine if the properties of the 

application is working right. The methods of prioritization: 

the initial ordering, the random ordering, and the reverse 

ordering were based on the ability of fault detection. In the 

development of software application, there is a test suite that 

is less commonly called the suite to check the software 

validity. This test suite consists of a detailed set of goals or 

instructions for every test case collection or information on 

the configuration of the system that is used at the time of 

testing [3].  

The process of these test automation aspects aims at 

replacing all manual and subjective tests that contribute to 

the boosting of productivity alongside the optimization of 

both resources and cost. The primary issue found in this 

scenario was to create and further improve their test suite as 

the number of traits can have a major impact on the process 

of software development. Owing to fact of the complexity and 

also the diversity that is inherent in test optimization 

presented by literature and divided into various topics which 

are distinct and related like the test case generation, test suite 

minimization and also the choice and prioritization of the 

test cases [4].  
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The generators of test cases are the programs receiving the 

parameters of input, the data structure definitions, test 

criteria, specifications and so on. The algorithms of test case 

generation make use of heuristics and some more strategies 

that aim at the test cases to maximize test coverage. But, 

generating the realistic test cases meet the needs of tests and 

with the complexity and the diversity of the parameters of 

input are important for the real world applications.  

The coverage-based test case selection: this is examined 

widely in code coverage. This coverage found in the test case 

is measured by the total number of lines that have been 

executed using the test case. Even though there has been a 

finer level of coverage can result in potentially more effective 

information that is unavailable unless there is an execution of 

the code [5].  

The Diversity-based selection of the test case: in recent 

years, there has been a lot of diversity among test cases which 

is a critical function in optimization. Speaking intuitively, 

this diversity among two of the test cases has been a distance 

function which can ideally measure dissimilarity. Diversity 

for either one or more than one of the test cases denotes an 

average and a pairwise diversity for this set. By assuming 

that every test case was encoded as the binary vector wherein 

the 1s correspond to program units as the functions within 

the test case. For this encoding, all functions of diversity in 

literature are the Hamming distance, the Dice diversity or the 

Levenshtein.  

The problems of optimization which get impacted by 

several factors are known as multi-objective. It may not be 

possible at all times to be able to find a single solution to 

optimize all the objectives at the same time. This is owing to 

the fact that the objective functions that are connected to the 

diverse metrics generally have some conflict with a set of 

ideal solutions that were generated normally following the 

concepts of Pareto dominance [6]. This Pareto efficient 

approach can take many objectives like the code coverage, 

the history of past fault-detection and the cost of execution.  

In order to be able to overcome the problem of multi-objective 

optimization, the NSGA with the SDS algorithm was 

proposed. The rest of the investigation has been organized 

thus. The discussion of all related work in literature is made 

in section 2. The different methods used were explained in 

section 3. The experimental results were discussed in section 

4 and the conclusion was made in Section 5. 

II. RELATED WORK 

Shin and Lim [8] had made yet another proposal of a 

method which will automatically generate software along 

with hardware test cases from the UML model developed 

using a process of model-based development. In this, 

languages like the source code were used inside the mode. 

These expected values that are used for the test case had been 

generated with a custom parser. These subsequent steps are 

found in the test case was combined for generating an 

integration test with a bottom-up approach. After this, all the 

cases will be converted into their hardware test cases that 

were used for the approval testing of embedded systems by 

means of using the XQuery along with tables of hardware 

mapping. This approach had been able to provide a 

procedure for automatic testing in the embedded systems that 

had been developed by the methods that were model-based 

and also generated the test cases very efficiently. For 

concluding, the method could help in the reduction of 

resources needed for test case generation made from the 

software to the hardware.   

Ali et al., [9] had proposed some results of a 

comprehensive and systematic review aiming at 

characterizing the manner in which empirical investigations 

were designed for investigating the Search-Based Software 

Testing (SBST) and the cost-effectiveness along with 

empirical evidence that was available regarding the SBST 

scalability and effectiveness of cost. This could also provide a 

new framework to drive the process of data collection for a 

systematic review and was taken to be the starting point for 

the guidelines and the manner in which these SBST 

techniques were assessed empirically. The intent was to help 

researchers in future to conduct empirical investigations in 

the SBST by means of providing unbiased empirical evidence 

and also by guiding them in the performance of certain 

well-designed and well-executed references to empirical 

investigations.   

Wang et al., [10] had made a proposal of a new and 

practical guide to the SBSE community for being able to 

choose some quality indicators to assess the search that was 

Pareto-based in the context of software engineering. This was 

also a practical guide derived from the complementary 

empirical and theoretical methods mentioned below: 1) the 

key theoretical foundations for quality indicators; 2) an 

evidence from the extended review of literature; and 3) all 

evidence that had been collected from the extensive 

experiments that had been conducted for the evaluation of the 

eight indicators of quality from a total of four categories that 

had a total of six search algorithms that were Pareto-based by 

using a total of three industrial problems obtained from two 

different domains that were diverse.   

Wang et al., [11] had proposed the solution which was 

resource-aware and multi-objective using a fitness function 

that was defined on the basis of four measures that were 

cost-effective. In a similar context, there was a new set of 

software releases that were tested based on a small set of the 

Video Conferencing Systems (VCSs) based hardware (test 

resources) found compatible by means of executing a new set 

of test cases that were cost-effective which were in an optimal 

order in a certain given test cycle that was constrained by 

means of a maximum allowed time budget and the available 

test resources. This was also evaluated in an empirical 

manner by employing seven different search algorithms and 

were compared with their current practice (Random 

Ordering (RO)). Results proved that the solution along with 

its best search algorithm (Random-Weighted Genetic 

Algorithm (RWGA)) and this will be able to improve current 

practice by means of bringing down on an average of about 

40.6% of the time that had been used for the allocation of 

resource and the execution of the test cases with an improved 

usage of test resource by about 37.9% and a fault detection on 

an average by about 60%.  
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Guizzo et al., [12] had further introduced a new 

Hyper-heuristic for Integration and Test Order (HITO) issues. 

This included another new set of some well-designed steps 

that were based on a total of two different selection functions 

(the Choice Function and the Multi-Armed Bandit) for the 

purpose of choosing the ideal heuristic (a combination of 

both mutation and crossover operations) in each mating. In 

order to perform this type of selections, there was a measure 

of quality that had been proposed for assessing the 

performance of heuristics of a low level in the entire process 

of evolution. The HITO had been implemented by employing 

the NSGA-II and was further evaluated for solving the 

integration along with the problem of test order in all the 

seven systems. This hyper-heuristic was able to obtain the 

results that were the best for the systems on being compared 

to that of the traditional algorithms.   

Panichella et al., [13] had improved the actual optimality 

of that of the Multi-Objective Genetic Algorithms (MOGAs) 

which was improved to a significant extent by means of 

diversifying solutions (the sub-sets of test suites) which were 

generated at the time of the search. More specifically, this 

work brought in the MOGA that was coined as the DIVersity 

based Genetic Algorithm (DIV-GA). This was based on the 

orthogonal design and the orthogonal evolution mechanisms 

that improved diversity. The results of this empirical work 

made on eleven programs proved that the DIV-GA was able 

to outperform the greedy algorithms and also the traditional 

MOGAs from the point of view of optimality. Furthermore, 

these solutions (of subsets of test suites) given by the DIV-GA 

could detect some more faults aside from the remaining 

algorithms at the same time keeping the cost of executing the 

same.  

Saber et al., [14] had made a proposal of yet another novel 

hybrid algorithm for addressing the problem with three steps: 

the greedy algorithm which was for identifying good 

solutions in a quick manner, a Genetic Algorithm (GA) for 

the purpose of increasing the search space covered with a 

local search algorithm to refine solutions. This also 

demonstrated it by means of an empirical evaluation of a 

large scale making the method more reliable and robust. This 

was proposed in the scenario using four different objectives 

with time for default execution that was about 178% better in 

the hyper-volume compared to all algorithms that were 

state-of-the-art. 

This was in response to a competitive market that had to be 

kept cost-effective with the software of good quality for 

which the testing and also the debugging has to be done 

independently making it quite expensive. For this, they had 

to explore the test cases for each product. There was a new 

GA-based framework that was proposed by Li et al., [15] to 

integrate the techniques of localization of software faults 

focusing on the specifications of the test being reused. There 

were case studies that made use of four product lines along 

with eight techniques of fault localization that had been 

conducted for demonstrating the framework and its 

effectiveness. Results proved that these test cases were 

generated in an easily reusable way (with suitable conversion) 

among products belonging to the same family that help in 

overall costs of testing and debugging.  

Garousi et al., [16] had been motivated an industrial need 

for improving the practices of regression-testing which were 

in the context of the industrial software that was 

safety-critical in the domain of defence in Turkey. For this, 

there was an “action-research” that was conducted which 

was a collaborative project executed between the academia 

and industry. This selected a Multi-Objective 

Regression-Test selection framework (MORTO) and had 

adopted it to the context of the industry thus developing a GA 

that was custom-built. This was able to provide complete 

coverage of the needs and bringing about benefit and cost 

factors such as bringing down the test cases and increasing 

the detected faults for every test suite.  

Agrawal and Kaur [17] had made a comparison of the 

Hybrid PSO and the Ant Colony Optimization. This was of 

major relevance in the field of software engineering. There 

were several experiments that were conducted using the 

MATLAB, and it was reported that the work had the 

underlying motivation of creating an awareness of two 

different aspects: the comparison of the performance of all 

metaheuristic algorithms and duly demonstrating the test 

case selection and its significance in the field of software 

engineering.  

III. METHODOLOGY 

Most of the problems in optimization have several 

conflicting objectives. The primary goal of multi-objective 

optimization was to optimize all these conflicting objectives 

in a simultaneous manner [18]. Generally, a problem of 

multi-objective minimization using the M decision variables 

along with the N objectives are stated as in (1 and 2): 

1

 ( ) 1,...,

 ( ,...., )

i

m

Minimize f x N

Where x x x X



 
              (1) 

 :  ( ) 0   1,....,

                  ( ) 0   1,....,

i

k

Subject to g x j M

h x k K

 

 
    (2) 

In this, the fi denotes an ith objective function, the x 

denotes a decision vector representing the solution and X the 

parameter space. The functions of gj and the hk are equality 

and inequality. It has a desired solution as a “trade-off” 

which is a compromise among parameters. This type of an 

optimal solution to trade-offs among objects will constitute 

the Pareto front. There are several multi-objective deals of 

optimization that generate the Pareto front as well. The 

solution is normally supposed to be non-dominated in case it 

is impossible to be able to improve a single component 

without making it detrimental to the value of the other 

component.  

The primary goal of this type of multi-objective 

optimization was to ensure the identification of 

well-established Pareto front which consists of solutions that 

are non-dominated. For the same purpose there had been a 

problem of multi-objective test case selection that was 

identified with the NSGA-II 

and SDS algorithm. 
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A. Multi-Objective Test Case Selection 

The problem of this multi-objective test case was to select a 

new subset which was Pareto efficient and was based on 

several test criteria. This may be defined as below: Given: the 

test suite, T, a vector of the M objective functions, fi, i = 1, 

2… M. The Problem: was to find the subset of T, T‟, so that 

the T‟ was a new Pareto optimal set which was in respect to 

its objective functions, fi, i = 1, 2… M. These objective 

functions were the descriptions of this test criteria. The 

subset t1 will dominate t2 at the time the decision vector for 

the t1 ({f1 (t1) . . . fM (t1)}) will dominate the t2. The subset 

resulting from the test suite T‟, as several other benefits with 

regard to regression testing [19].  

For the purpose of this work, this will instantiate two of the 

objectives and their formulation along with its code coverage 

which is identified as a measure of test adequacy. Time is the 

other objective that needs be minimized for certain level of 

code coverage. 

For this type of instantiation of problems, there needs to be 

a subset for the test suite which is s that has a coverage c1 and 

the execution time t1 on a Pareto frontier, which is:  

• T1. None of the other subsets of s can get more coverage 

than the c1 without having to spend more time than the t1. 

• T2. None of the other subsets of s are able to finish in a 

time that is less than t1 at the same time getting a coverage 

found to be more or equal to c1. 

This denotes the actual implication of the Pareto 

optimality. As opposed to getting one single answer for 

approximating the global optimum within the search space 

for one single objective, this can get another new set of points 

in an optimal manner. Every member in the Pareto frontier 

will be a candidate solution that does not have any 

improvement. 

B. Non-dominated Sorting Genetic Algorithm II (NSGA 

II) 

The NSGA II has been a new and evolutionary algorithm 

that is multi-objective and based on sorting that is 

non-dominated. The algorithm makes use of the elitist and 

non-dominated sorting. There is yet another objective 

function which is in terms of the variables coded in the 

algorithm. The members belonging to the Pareto-front are 

part of a non-dominated set which is obtained on the basis of 

convergence. The choice is made for the crowded 

comparison based on ranking (based on the level of 

non-domination) and also the crowding distance which is 

obtained on the convergence of this algorithm [20]  

There is also a random generation of parent population (or 

solution) P of a size N. For the purpose of identifying the 

level of non-domination, every solution is duly compared to 

yet another solution and it is further checked if the solution is 

able to satisfy the rules as in (3): 

.1[ ] .1[ ]  .2[ ] .2[ ],

 .1[ ] .1[ ]  .2[ ] .2[ ],

Obj i Obj j and Obj i Obj j

or Obj i Obj j and Obj i Obj j

 

 
    (3) 

Where the i and j are the chromosome numbers. 

Now, in case the rules are met, its chosen solution will be 

marked as being dominated. If not, there is a chosen solution 

will be marked as non-dominated. In the case of the first 

sorting, all non-dominated solutions (N1) were assigned to a 

rank 1. From the rest of the N–N1 dominated solution taken 

from the first sorting gets sorted to all non-dominated 

solutions found in second sorting assigned to rank 2. The 

process will continue until such time all the solutions duly get 

ranked. Each solution will be given a new fitness which is 

equal to the non-domination task level (rank 1 is the best, 

rank to the next and so on). These solutions will belong to a 

certain rank or a level of non-domination and no solution that 

is better compared to that of the others. As soon as the rank 

for the solution was identified as the crowding distance for 

the solution.  

The crowding distance is the average distance of the points 

that are located on each side of the solution point. For 

computing the crowded distance, the populations in the 

non-dominated set that were sorted in ascending order of 

magnitude ideally in accordance with every objective 

function. After this, there had been a new boundary solution 

for every objective function which was the one that had both 

the largest and the smallest of infinity values. The remainder 

of these intermediate solutions had been assigned to the value 

that was equal to the absolute and normalized difference 

found in the function value for two of the adjacent solutions. 

In order to solve this problem of optimization employing the 

GA, there is a need for fitness value. These fitness values 

were objective function values. Thus, we will have to use a 

function or an equation that can be related to the decision 

variable with the objective.  

Crossover: In the case of the NSGA II Simulated Binary 

Crossover (SBX) which is used, the work is completed with 

two different parent solutions creating two different offspring 

as below [21]: 

Step 1: Select a random number ui ϵ [0, 1],  

Step 2: Calculate this by using equation (4),  

Step 3: Compute the offspring by using equation (5).  

The mathematical formulation for this may be given as 

below: 

1

1

1

1

(2 )           0.5;

1
  .

2(1 )

c

i

c

i i

q

i

u if u

otherwise
u












 


 
 
   

     (4) 

   

   

(1, 1) (1, ) (2, )

(2, 1) (1, ) (2, )

0.5 1 1 ,

0.5 1 1 .

i i

i i

t t t
i q i q i

t t t
i q i q i

x x x

x x x

 

 





    
 

    
 

    (5) 

 

Wherein, 

ui: denotes the random number so that ui ϵ [0, 1], 

c : denotes the distribution index (the Non-negative real 

number), 
(1, )t

ix
&

(2, )t

ix
: denotes the parent solutions, 

(1, 1)t

ix 

&
(2, 1)t

ix 

: denotes the offspring solutions. 
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Mutation: In the case of the NSGA II the Polynomial 

mutation is employed to mutate every solution individually. 

For example, if one parent solution provides an offspring it is 

only after it is mutated. This is mathematically depicted as (6 

and 7):  

(1, 1) (1, 1) ( ) ( )( )t t U L

i i i i iy x x x 


   
     (6) 

Wherein, 

1/( 1)

1/( 1)

(2 ) 1         0.5,

1 [2(1 )] ,   0.5

m

m

i i
i

i i

r if r

r if r










  
 

  

    (7) 

In this, 

ri: denotes the random number so that ui ϵ [0, 1], 

m : denotes the distribution index (the non-negative real 

number), 
(1, 1)t

ix 

: denotes the parent solution, 
(U)

ix
: denotes the upper bound for its parent solution, 

(L)

ix
: denotes the lower bound for its parent solution, 

( 1)t

iy 

: denotes the Offspring solution. 

The Crowded Tournament Selection: in order to obtain an 

estimation of the solutions and their density found to be close 

to a solution i within the population, it can now an average of 

both solutions of both sides of solution i along every 

objective. Quantity di will denote its crowding distance. The 

algorithm which follows will be employed for computing its 

crowding distance for each point that is found as in set Ƒ.   

The assignment procedure: Crowding-sort (Ƒ, <c) 

Step 1: Call the actual number of the solutions found in Ƒ 

as Ɩ = |Ƒ|. For every i found within the set, initially assign di = 

0.  

Step 2: For every such objective function m =1, 2…M, sort 

a set in the worse order of fm. Now find the sorted indices of 

vector Im = sort (fm, >).  

Step 3: For m = 1….M, a large distance to edge solutions 

1 1
m mI I

d d  
 to be assigned and other solutions, j = 2 to (l 

– 1) is assigned as in (8): 

   1 1

max min

m m
j j

m m
j j

I I

m m

I I
m m

f f
d d

f f

 


 


      (8). 

C. Stochastic Diffusion Search (SDS) Algorithm 

There is also the SDS algorithm introduced to be a new 

probabilistic approach in order to solve the recognition and 

the matching problems. The SDS was a population-based 

multi-agent global search algorithm which is employed in a 

distributed mode of computation using a framework which 

was strong that described the algorithm and its behavior by 

means of investigating the allocation of resources, the 

robustness, the linear complexity of time, the final criteria of 

minimal convergence and also the convergence to the global 

optimum [22].  

This SDS algorithm will commence the search or the 

optimization by means of population initialization (such as 

miners found in the metaphor of the mining game). For any 

of the other SDS searches, every agent will maintain a new 

hypothesis which is h that defines any of these solutions to a 

possible problem. In this mining game analogy, the agent 

hypothesis also identifies a hill and once the initialization is 

complete, there will be two phases that follow:  

 The Test Phase (such as the testing of availability of 

gold) 

 The Diffusion Phase (such as the information exchange 

and its congregation) 

The SDS algorithm is depicted as below: 

sin   ()

 (     )

  ()

  ()

Initiali g agents

While stopping condition is not met

Testing hypotheses

Diffusion hypotheses

End

  

In a test phase, the SDS will checks if the agent hypothesis 

has been successful which is not done by performing an 

evaluation of a partial hypothesis that which returns the 

Boolean value. Once this is done, in an iteration, a contingent 

on a strategy of recruitment employed will have successful 

hypotheses that diffuse across the population wherein the 

information on solutions will spread through the whole agent 

population. For a test phase, every agent will perform the 

partial function evaluation, pFE, and this denotes the 

function of the agent hypothesis; pFE = f (h). In the case of 

the mining game, there is a function of partial evaluation 

which entails the mining of a region on the hill that was 

chosen randomly and further defined by the hypothesis of the 

agent (as opposed to the mining of the regions on the same 

hill).  

In the case of the diffusion phase, every single agent will 

recruit one more agent to interact with the communication 

hypothesis. For a metaphor of the mining game, there was a 

diffusion performed by means of communicating the hill 

hypothesis.  

Relate: This denotes a phase that is optional and 

introduced for multiple models. The technique will permit a 

large degree of agent re-allocation along with the 

maintenance of the multiple clusters of all active agents that 

have several good hypotheses. The relate phase further helps 

in the dynamic search spaces permitting clusters of agents to 

re-align themselves successfully with the correct hypothesis. 

There are two modes to the relate phase: the context-free and 

the context-sensitive [23].  

Halting: Once each test with the diffuse iteration (and as a 

new option the related phase) is complete, this SDS process 

determines as to where the agent population has been 

reached with a new state to determine its search. During the 

time of their initial iterations, there are some mores such 

active agent populations that are small until the agent is able 

to reach a hypothesis that is optimal; a population (cluster) 

which is around this hypothesis will grow at the time there 

are more agents to be recruited. 

 

 

 



A Stochastic Method for Test Case Selection in Software Testing 

 

270 

Retrieval Number: D10551284S519/2019©BEIESP 

DOI:10.35940/ijrte.D1055.1284S519 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 On the basis of the search space and model parameters, 

the cluster around an optimal hypothesis (the hypotheses in 

the case of a relate phase) will get stabilized. Identified are 

two different criteria that are applied for the determination 

during the SDS process and its search which ends: this is the 

weak halting and the strong halting criteria.  

The Weak Halting Criteria: this indicates the SDS to be 

able to stop during a percentage of agents who are found as 

active in spite of the hypothesis.  This has been taken to be a 

population of active agents who are steady within a margin of 

tolerance for a certain number of iterations. Once these 

criteria are met, the search ceases.  

The Strong Halting Criteria: This indicates the state of 

halt that had been connected to the agent percentage that falls 

under its largest cluster. This denotes the hypothesis at the 

time the agents get clustered and have a similar threshold or 

rule of tolerance having a state of weak halting and when 

looking at the agent percentage that is active in the largest 

cluster. 

IV. RESULTS AND DISCUSSION 

In this section, the reference, NSGA and stochastic 

diffusion methods are used. Experiments are evaluated using 

10000 to 80000 cost. The print tokens and space as shown in 

tables 1 & 2 and Fig 1 & 2. 

 

Table 1 Print Tokens 

Cost Referenc

e 

NSGA Stochastic 

Diffusion 

10000 0.8 0.76 0.78 

20000 0.8 0.77 0.79 

30000 0.81 0.78 0.79 

40000 0.85 0.8 0.82 

50000 0.86 0.81 0.85 

60000 0.88 0.84 0.86 

70000 0.87 0.85 0.88 

80000 0.88 0.87 0.88 

 

 
Fig 1 Print Tokens 

From the Fig 1, it can be observed that the stochastic 

diffusion has higher print tokens by 2.59% for 10000 cost, by 

1.27% for 30000 cost, by 4.82% for 50000 cost and by 3.47% 

for 70000 cost when compared with NSGA respectively. The 

stochastic diffusion has lower print tokens by 2.53% for 

10000 cost, by 2.5% for 30000 cost, by 1.17% for 50000 cost 

and by 1.14% for 70000 cost when compared with reference 

respectively. 

Table 2 Space 

Cost Reference NSGA Stochastic 

Diffusion 

10000 0.77 0.74 0.76 

20000 0.78 0.75 0.76 

30000 0.8 0.76 0.77 

40000 0.82 0.78 0.81 

50000 0.84 0.79 0.82 

60000 0.86 0.81 0.85 

70000 0.86 0.83 0.85 

80000 0.87 0.85 0.86 

 

 
Fig 2 Space 

From the Fig 2, it can be observed that the stochastic 

diffusion has higher space by 2.67% for 10000 cost, by 1.31% 

for 30000 cost, by 3.73% for 50000 cost and by 2.38% for 

70000 cost when compared with NSGA respectively.  

The stochastic diffusion has lower space by 1.31% for 

10000 cost, by 3.82% for 30000 cost, by 2.41% for 50000 cost 

and by 1.17% for 70000 cost when compared with reference 

respectively. 

V. CONCLUSION 

Software testing indicates the actual process of 

experimenting of program with the input data for the purpose 

of observing failure. This testing will be able to identify faults 

and also remove them to improve software quality. Testing 

further measures the capacity of achieving the correctness, 

testability, reusability, maintainability, usability, and 

reliability. The selection of a test case can be called a classic 

technique which chooses one more such new subject for the 

current test cases used for execution because of tight 

deadlines and limited budgets. This code coverage is the state 

of practice which is made among the heuristics of the test 

case selection. In recent literature, there is a „test case 

diversity‟ that has been observed to be a very promising 

approach. There was another multi-objective selection of test 

case that aims at optimizing the various objective functions 

simultaneously. 

 

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019 

 

271 

Retrieval Number: D10551284S519/2019©BEIESP 

DOI:10.35940/ijrte.D1055.1284S519 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 The NSGA-II denotes the algorithm which is given in 

order to solve problems in multi-objective optimization. The 

NSGA-II will employ faster processes of various probabilistic 

approached for solving the pattern recognition which is 

best-fit. The SDS has been the algorithm multi-agent global 

search optimization which is distributed for computation 

based in interaction of simple agents. Results proved that the 

stochastic diffusion can have higher print tokens by about 

2.59% for the 10000 cost, by about 1.27% for the 30000 cost, 

by about 4.82% for the 50000 cost and further by about 

3.47% for about 70000 cost on being compared with the 

NSGA respectively. This stochastic diffusion also has some 

more lower print tokens by about 2.53% for the 10000 cost, 

by about 2.5% for the 30000 cost, by about 1.17% for the 

50000 cost and finally by 1.14% for the 70000 cost on being 

compared to the reference respectively. 
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