
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

265

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract: The quality of the software is a very important

aspect in the development of software application. In order to

make sure there is the software of good quality, testing is a

critical activity of software development. Thus, software testing

is the activity which focuses on the computation of an attribute

or the ability of either a system or program that decides if user

requirements are met. There is a proper strategy for the design of

software for which testing has to be adopted. The techniques of

test case selection attempt at reduction of the test cases that need

to be executed at the same time satisfying the needs of testing

that has been denoted by the test criteria. In the time of software

testing, and the resource will be the primary constraints at the

time of testing since this has been a highly neglected phase in the

Software Development Life Cycle (SDLC). The optimizing of a

test suite is very critical for the reduction of the testing phase and

also the selection of the test cases that eliminate unwanted or

redundant data. All work in literature will make use of

techniques of single objective optimization that does not have to

be efficient as the code coverage will play an important role at

the time of selection of test case. As the test case choice is

Non-Deterministic, the work also proposes a novel and

multi-objective algorithm like the Non-Dominated Sorting

Genetic Algorithm II (NSGA II) and the Stochastic Diffusion

Search (SDS) algorithm that makes use of the cost of execution

and code coverage as its objective function. The results prove a

faster level of convergence of the algorithm with better coverage

of code in comparison to the NSGA II.

Index Terms: Multi- Objective Optimization, Non-dominated

Sorting Genetic Algorithm II (NSGA II) Stochastic Diffusion

Search (SDS), Software Testing, Test Case Selection.

I. INTRODUCTION

Both the verification along with the validation of software

made by means of dynamic testing which is part of the area of

such software engineering in which the progress is towards

the automation which was slow. More particularly, for

automatic design or also the generation of test data, which is

generally a manual activity. Even today, there is software

testing which continues to be the primary technique that is

used for the purpose of gaining the confidence of customers

in this software. This testing process of a software system is

identified to be a major task and this is also very

time-consuming. Software testing is laborious and about

50% of the development of software system resources [1].

Normally, the primary goal of software testing will be the

designing of a new set of such test cases in a way in which it

can depict the maximum faults. There are, however, some

more benefits which are: a test preparation which is done

well in advance and this will have some test runs that are very

Revised Manuscript Received on December 5, 2019.

 *Mrs. Nithya T.M, Assistant Professor, Department of Computer Science

and Engineering, K. Ramakrishnan college of Engineering, Trichy, Tamil

Nadu, India

 Dr. Chitra. S, Principal, Er. Perumal Manimekalai College of

Engineering, Hosur, Tamil Nadu, India.

fast with the confidence of the testing result that may be

increased. But, there is also an automation of software testing

is not a process and is straightforward. For many years, there

were several researchers that have proposed many methods

for generation of test data in an automatic manner with

different methods to develop the generators of test data. The

technique further supports the automation of software testing

that may result in a significant level of savings of cost.

A test that is effective gets dependent on a certain specific

number of the detailed conditions that were employed in the

process of software testing. There were some more test cases

that were the parameters of an input along with some more

conditions of execution and also their expected results that

were used for testing. But, there was a set of another set of

these test cases (called the test suite) that is available to the

testers that grow in size with the evolving of the needs of the

software. For the purpose of this scenario, there had been

another execution of the test suite that may be unfeasible.

This selection of the test case indicates all approaches that

have been aimed at the choice of a new subset of test cases.

The approaches were the key to the definition of all testing

strategies or their development since they aim at the

development since they aim at eliminating unwanted or

redundant data and maximizing fault detection [2].

The prioritization of the test cases is the choice of test cases

in the order of priority along with execution with the

components that will specify the input, the operation and the

outcome expected to determine if the properties of the

application is working right. The methods of prioritization:

the initial ordering, the random ordering, and the reverse

ordering were based on the ability of fault detection. In the

development of software application, there is a test suite that

is less commonly called the suite to check the software

validity. This test suite consists of a detailed set of goals or

instructions for every test case collection or information on

the configuration of the system that is used at the time of

testing [3].

The process of these test automation aspects aims at

replacing all manual and subjective tests that contribute to

the boosting of productivity alongside the optimization of

both resources and cost. The primary issue found in this

scenario was to create and further improve their test suite as

the number of traits can have a major impact on the process

of software development. Owing to fact of the complexity and

also the diversity that is inherent in test optimization

presented by literature and divided into various topics which

are distinct and related like the test case generation, test suite

minimization and also the choice and prioritization of the

test cases [4].

A Stochastic Method for Test Case Selection in

Software Testing
Nithya T.M, Chitra. S

A Stochastic Method for Test Case Selection in Software Testing

266

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The generators of test cases are the programs receiving the

parameters of input, the data structure definitions, test

criteria, specifications and so on. The algorithms of test case

generation make use of heuristics and some more strategies

that aim at the test cases to maximize test coverage. But,

generating the realistic test cases meet the needs of tests and

with the complexity and the diversity of the parameters of

input are important for the real world applications.

The coverage-based test case selection: this is examined

widely in code coverage. This coverage found in the test case

is measured by the total number of lines that have been

executed using the test case. Even though there has been a

finer level of coverage can result in potentially more effective

information that is unavailable unless there is an execution of

the code [5].

The Diversity-based selection of the test case: in recent

years, there has been a lot of diversity among test cases which

is a critical function in optimization. Speaking intuitively,

this diversity among two of the test cases has been a distance

function which can ideally measure dissimilarity. Diversity

for either one or more than one of the test cases denotes an

average and a pairwise diversity for this set. By assuming

that every test case was encoded as the binary vector wherein

the 1s correspond to program units as the functions within

the test case. For this encoding, all functions of diversity in

literature are the Hamming distance, the Dice diversity or the

Levenshtein.

The problems of optimization which get impacted by

several factors are known as multi-objective. It may not be

possible at all times to be able to find a single solution to

optimize all the objectives at the same time. This is owing to

the fact that the objective functions that are connected to the

diverse metrics generally have some conflict with a set of

ideal solutions that were generated normally following the

concepts of Pareto dominance [6]. This Pareto efficient

approach can take many objectives like the code coverage,

the history of past fault-detection and the cost of execution.

In order to be able to overcome the problem of multi-objective

optimization, the NSGA with the SDS algorithm was

proposed. The rest of the investigation has been organized

thus. The discussion of all related work in literature is made

in section 2. The different methods used were explained in

section 3. The experimental results were discussed in section

4 and the conclusion was made in Section 5.

II. RELATED WORK

Shin and Lim [8] had made yet another proposal of a

method which will automatically generate software along

with hardware test cases from the UML model developed

using a process of model-based development. In this,

languages like the source code were used inside the mode.

These expected values that are used for the test case had been

generated with a custom parser. These subsequent steps are

found in the test case was combined for generating an

integration test with a bottom-up approach. After this, all the

cases will be converted into their hardware test cases that

were used for the approval testing of embedded systems by

means of using the XQuery along with tables of hardware

mapping. This approach had been able to provide a

procedure for automatic testing in the embedded systems that

had been developed by the methods that were model-based

and also generated the test cases very efficiently. For

concluding, the method could help in the reduction of

resources needed for test case generation made from the

software to the hardware.

Ali et al., [9] had proposed some results of a

comprehensive and systematic review aiming at

characterizing the manner in which empirical investigations

were designed for investigating the Search-Based Software

Testing (SBST) and the cost-effectiveness along with

empirical evidence that was available regarding the SBST

scalability and effectiveness of cost. This could also provide a

new framework to drive the process of data collection for a

systematic review and was taken to be the starting point for

the guidelines and the manner in which these SBST

techniques were assessed empirically. The intent was to help

researchers in future to conduct empirical investigations in

the SBST by means of providing unbiased empirical evidence

and also by guiding them in the performance of certain

well-designed and well-executed references to empirical

investigations.

Wang et al., [10] had made a proposal of a new and

practical guide to the SBSE community for being able to

choose some quality indicators to assess the search that was

Pareto-based in the context of software engineering. This was

also a practical guide derived from the complementary

empirical and theoretical methods mentioned below: 1) the

key theoretical foundations for quality indicators; 2) an

evidence from the extended review of literature; and 3) all

evidence that had been collected from the extensive

experiments that had been conducted for the evaluation of the

eight indicators of quality from a total of four categories that

had a total of six search algorithms that were Pareto-based by

using a total of three industrial problems obtained from two

different domains that were diverse.

Wang et al., [11] had proposed the solution which was

resource-aware and multi-objective using a fitness function

that was defined on the basis of four measures that were

cost-effective. In a similar context, there was a new set of

software releases that were tested based on a small set of the

Video Conferencing Systems (VCSs) based hardware (test

resources) found compatible by means of executing a new set

of test cases that were cost-effective which were in an optimal

order in a certain given test cycle that was constrained by

means of a maximum allowed time budget and the available

test resources. This was also evaluated in an empirical

manner by employing seven different search algorithms and

were compared with their current practice (Random

Ordering (RO)). Results proved that the solution along with

its best search algorithm (Random-Weighted Genetic

Algorithm (RWGA)) and this will be able to improve current

practice by means of bringing down on an average of about

40.6% of the time that had been used for the allocation of

resource and the execution of the test cases with an improved

usage of test resource by about 37.9% and a fault detection on

an average by about 60%.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

267

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Guizzo et al., [12] had further introduced a new

Hyper-heuristic for Integration and Test Order (HITO) issues.

This included another new set of some well-designed steps

that were based on a total of two different selection functions

(the Choice Function and the Multi-Armed Bandit) for the

purpose of choosing the ideal heuristic (a combination of

both mutation and crossover operations) in each mating. In

order to perform this type of selections, there was a measure

of quality that had been proposed for assessing the

performance of heuristics of a low level in the entire process

of evolution. The HITO had been implemented by employing

the NSGA-II and was further evaluated for solving the

integration along with the problem of test order in all the

seven systems. This hyper-heuristic was able to obtain the

results that were the best for the systems on being compared

to that of the traditional algorithms.

Panichella et al., [13] had improved the actual optimality

of that of the Multi-Objective Genetic Algorithms (MOGAs)

which was improved to a significant extent by means of

diversifying solutions (the sub-sets of test suites) which were

generated at the time of the search. More specifically, this

work brought in the MOGA that was coined as the DIVersity

based Genetic Algorithm (DIV-GA). This was based on the

orthogonal design and the orthogonal evolution mechanisms

that improved diversity. The results of this empirical work

made on eleven programs proved that the DIV-GA was able

to outperform the greedy algorithms and also the traditional

MOGAs from the point of view of optimality. Furthermore,

these solutions (of subsets of test suites) given by the DIV-GA

could detect some more faults aside from the remaining

algorithms at the same time keeping the cost of executing the

same.

Saber et al., [14] had made a proposal of yet another novel

hybrid algorithm for addressing the problem with three steps:

the greedy algorithm which was for identifying good

solutions in a quick manner, a Genetic Algorithm (GA) for

the purpose of increasing the search space covered with a

local search algorithm to refine solutions. This also

demonstrated it by means of an empirical evaluation of a

large scale making the method more reliable and robust. This

was proposed in the scenario using four different objectives

with time for default execution that was about 178% better in

the hyper-volume compared to all algorithms that were

state-of-the-art.

This was in response to a competitive market that had to be

kept cost-effective with the software of good quality for

which the testing and also the debugging has to be done

independently making it quite expensive. For this, they had

to explore the test cases for each product. There was a new

GA-based framework that was proposed by Li et al., [15] to

integrate the techniques of localization of software faults

focusing on the specifications of the test being reused. There

were case studies that made use of four product lines along

with eight techniques of fault localization that had been

conducted for demonstrating the framework and its

effectiveness. Results proved that these test cases were

generated in an easily reusable way (with suitable conversion)

among products belonging to the same family that help in

overall costs of testing and debugging.

Garousi et al., [16] had been motivated an industrial need

for improving the practices of regression-testing which were

in the context of the industrial software that was

safety-critical in the domain of defence in Turkey. For this,

there was an “action-research” that was conducted which

was a collaborative project executed between the academia

and industry. This selected a Multi-Objective

Regression-Test selection framework (MORTO) and had

adopted it to the context of the industry thus developing a GA

that was custom-built. This was able to provide complete

coverage of the needs and bringing about benefit and cost

factors such as bringing down the test cases and increasing

the detected faults for every test suite.

Agrawal and Kaur [17] had made a comparison of the

Hybrid PSO and the Ant Colony Optimization. This was of

major relevance in the field of software engineering. There

were several experiments that were conducted using the

MATLAB, and it was reported that the work had the

underlying motivation of creating an awareness of two

different aspects: the comparison of the performance of all

metaheuristic algorithms and duly demonstrating the test

case selection and its significance in the field of software

engineering.

III. METHODOLOGY

Most of the problems in optimization have several

conflicting objectives. The primary goal of multi-objective

optimization was to optimize all these conflicting objectives

in a simultaneous manner [18]. Generally, a problem of

multi-objective minimization using the M decision variables

along with the N objectives are stated as in (1 and 2):

1

 () 1,...,

 (,....,)

i

m

Minimize f x N

Where x x x X



 
 (1)

 : () 0 1,....,

 () 0 1,....,

i

k

Subject to g x j M

h x k K

 

 
 (2)

In this, the fi denotes an ith objective function, the x

denotes a decision vector representing the solution and X the

parameter space. The functions of gj and the hk are equality

and inequality. It has a desired solution as a “trade-off”

which is a compromise among parameters. This type of an

optimal solution to trade-offs among objects will constitute

the Pareto front. There are several multi-objective deals of

optimization that generate the Pareto front as well. The

solution is normally supposed to be non-dominated in case it

is impossible to be able to improve a single component

without making it detrimental to the value of the other

component.

The primary goal of this type of multi-objective

optimization was to ensure the identification of

well-established Pareto front which consists of solutions that

are non-dominated. For the same purpose there had been a

problem of multi-objective test case selection that was

identified with the NSGA-II

and SDS algorithm.

A Stochastic Method for Test Case Selection in Software Testing

268

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

A. Multi-Objective Test Case Selection

The problem of this multi-objective test case was to select a

new subset which was Pareto efficient and was based on

several test criteria. This may be defined as below: Given: the

test suite, T, a vector of the M objective functions, fi, i = 1,

2… M. The Problem: was to find the subset of T, T‟, so that

the T‟ was a new Pareto optimal set which was in respect to

its objective functions, fi, i = 1, 2… M. These objective

functions were the descriptions of this test criteria. The

subset t1 will dominate t2 at the time the decision vector for

the t1 ({f1 (t1) . . . fM (t1)}) will dominate the t2. The subset

resulting from the test suite T‟, as several other benefits with

regard to regression testing [19].

For the purpose of this work, this will instantiate two of the

objectives and their formulation along with its code coverage

which is identified as a measure of test adequacy. Time is the

other objective that needs be minimized for certain level of

code coverage.

For this type of instantiation of problems, there needs to be

a subset for the test suite which is s that has a coverage c1 and

the execution time t1 on a Pareto frontier, which is:

• T1. None of the other subsets of s can get more coverage

than the c1 without having to spend more time than the t1.

• T2. None of the other subsets of s are able to finish in a

time that is less than t1 at the same time getting a coverage

found to be more or equal to c1.

This denotes the actual implication of the Pareto

optimality. As opposed to getting one single answer for

approximating the global optimum within the search space

for one single objective, this can get another new set of points

in an optimal manner. Every member in the Pareto frontier

will be a candidate solution that does not have any

improvement.

B. Non-dominated Sorting Genetic Algorithm II (NSGA

II)

The NSGA II has been a new and evolutionary algorithm

that is multi-objective and based on sorting that is

non-dominated. The algorithm makes use of the elitist and

non-dominated sorting. There is yet another objective

function which is in terms of the variables coded in the

algorithm. The members belonging to the Pareto-front are

part of a non-dominated set which is obtained on the basis of

convergence. The choice is made for the crowded

comparison based on ranking (based on the level of

non-domination) and also the crowding distance which is

obtained on the convergence of this algorithm [20]

There is also a random generation of parent population (or

solution) P of a size N. For the purpose of identifying the

level of non-domination, every solution is duly compared to

yet another solution and it is further checked if the solution is

able to satisfy the rules as in (3):

.1[] .1[] .2[] .2[],

 .1[] .1[] .2[] .2[],

Obj i Obj j and Obj i Obj j

or Obj i Obj j and Obj i Obj j

 

 
 (3)

Where the i and j are the chromosome numbers.

Now, in case the rules are met, its chosen solution will be

marked as being dominated. If not, there is a chosen solution

will be marked as non-dominated. In the case of the first

sorting, all non-dominated solutions (N1) were assigned to a

rank 1. From the rest of the N–N1 dominated solution taken

from the first sorting gets sorted to all non-dominated

solutions found in second sorting assigned to rank 2. The

process will continue until such time all the solutions duly get

ranked. Each solution will be given a new fitness which is

equal to the non-domination task level (rank 1 is the best,

rank to the next and so on). These solutions will belong to a

certain rank or a level of non-domination and no solution that

is better compared to that of the others. As soon as the rank

for the solution was identified as the crowding distance for

the solution.

The crowding distance is the average distance of the points

that are located on each side of the solution point. For

computing the crowded distance, the populations in the

non-dominated set that were sorted in ascending order of

magnitude ideally in accordance with every objective

function. After this, there had been a new boundary solution

for every objective function which was the one that had both

the largest and the smallest of infinity values. The remainder

of these intermediate solutions had been assigned to the value

that was equal to the absolute and normalized difference

found in the function value for two of the adjacent solutions.

In order to solve this problem of optimization employing the

GA, there is a need for fitness value. These fitness values

were objective function values. Thus, we will have to use a

function or an equation that can be related to the decision

variable with the objective.

Crossover: In the case of the NSGA II Simulated Binary

Crossover (SBX) which is used, the work is completed with

two different parent solutions creating two different offspring

as below [21]:

Step 1: Select a random number ui ϵ [0, 1],

Step 2: Calculate this by using equation (4),

Step 3: Compute the offspring by using equation (5).

The mathematical formulation for this may be given as

below:

1

1

1

1

(2) 0.5;

1
 .

2(1)

c

i

c

i i

q

i

u if u

otherwise
u












 


 
 
   

 (4)

   

   

(1, 1) (1,) (2,)

(2, 1) (1,) (2,)

0.5 1 1 ,

0.5 1 1 .

i i

i i

t t t
i q i q i

t t t
i q i q i

x x x

x x x

 

 





    
 

    
 

 (5)

Wherein,

ui: denotes the random number so that ui ϵ [0, 1],

c : denotes the distribution index (the Non-negative real

number),
(1,)t

ix
&

(2,)t

ix
: denotes the parent solutions,

(1, 1)t

ix 

&
(2, 1)t

ix 

: denotes the offspring solutions.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

269

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Mutation: In the case of the NSGA II the Polynomial

mutation is employed to mutate every solution individually.

For example, if one parent solution provides an offspring it is

only after it is mutated. This is mathematically depicted as (6

and 7):

(1, 1) (1, 1) () ()()t t U L

i i i i iy x x x 


   
 (6)

Wherein,

1/(1)

1/(1)

(2) 1 0.5,

1 [2(1)] , 0.5

m

m

i i
i

i i

r if r

r if r










  
 

  

 (7)

In this,

ri: denotes the random number so that ui ϵ [0, 1],

m : denotes the distribution index (the non-negative real

number),
(1, 1)t

ix 

: denotes the parent solution,
(U)

ix
: denotes the upper bound for its parent solution,

(L)

ix
: denotes the lower bound for its parent solution,

(1)t

iy 

: denotes the Offspring solution.

The Crowded Tournament Selection: in order to obtain an

estimation of the solutions and their density found to be close

to a solution i within the population, it can now an average of

both solutions of both sides of solution i along every

objective. Quantity di will denote its crowding distance. The

algorithm which follows will be employed for computing its

crowding distance for each point that is found as in set Ƒ.

The assignment procedure: Crowding-sort (Ƒ, <c)

Step 1: Call the actual number of the solutions found in Ƒ

as Ɩ = |Ƒ|. For every i found within the set, initially assign di =

0.

Step 2: For every such objective function m =1, 2…M, sort

a set in the worse order of fm. Now find the sorted indices of

vector Im = sort (fm, >).

Step 3: For m = 1….M, a large distance to edge solutions

1 1
m mI I

d d  
 to be assigned and other solutions, j = 2 to (l

– 1) is assigned as in (8):

   1 1

max min

m m
j j

m m
j j

I I

m m

I I
m m

f f
d d

f f

 


 


 (8).

C. Stochastic Diffusion Search (SDS) Algorithm

There is also the SDS algorithm introduced to be a new

probabilistic approach in order to solve the recognition and

the matching problems. The SDS was a population-based

multi-agent global search algorithm which is employed in a

distributed mode of computation using a framework which

was strong that described the algorithm and its behavior by

means of investigating the allocation of resources, the

robustness, the linear complexity of time, the final criteria of

minimal convergence and also the convergence to the global

optimum [22].

This SDS algorithm will commence the search or the

optimization by means of population initialization (such as

miners found in the metaphor of the mining game). For any

of the other SDS searches, every agent will maintain a new

hypothesis which is h that defines any of these solutions to a

possible problem. In this mining game analogy, the agent

hypothesis also identifies a hill and once the initialization is

complete, there will be two phases that follow:

 The Test Phase (such as the testing of availability of

gold)

 The Diffusion Phase (such as the information exchange

and its congregation)

The SDS algorithm is depicted as below:

sin ()

 ()

 ()

 ()

Initiali g agents

While stopping condition is not met

Testing hypotheses

Diffusion hypotheses

End

In a test phase, the SDS will checks if the agent hypothesis

has been successful which is not done by performing an

evaluation of a partial hypothesis that which returns the

Boolean value. Once this is done, in an iteration, a contingent

on a strategy of recruitment employed will have successful

hypotheses that diffuse across the population wherein the

information on solutions will spread through the whole agent

population. For a test phase, every agent will perform the

partial function evaluation, pFE, and this denotes the

function of the agent hypothesis; pFE = f (h). In the case of

the mining game, there is a function of partial evaluation

which entails the mining of a region on the hill that was

chosen randomly and further defined by the hypothesis of the

agent (as opposed to the mining of the regions on the same

hill).

In the case of the diffusion phase, every single agent will

recruit one more agent to interact with the communication

hypothesis. For a metaphor of the mining game, there was a

diffusion performed by means of communicating the hill

hypothesis.

Relate: This denotes a phase that is optional and

introduced for multiple models. The technique will permit a

large degree of agent re-allocation along with the

maintenance of the multiple clusters of all active agents that

have several good hypotheses. The relate phase further helps

in the dynamic search spaces permitting clusters of agents to

re-align themselves successfully with the correct hypothesis.

There are two modes to the relate phase: the context-free and

the context-sensitive [23].

Halting: Once each test with the diffuse iteration (and as a

new option the related phase) is complete, this SDS process

determines as to where the agent population has been

reached with a new state to determine its search. During the

time of their initial iterations, there are some mores such

active agent populations that are small until the agent is able

to reach a hypothesis that is optimal; a population (cluster)

which is around this hypothesis will grow at the time there

are more agents to be recruited.

A Stochastic Method for Test Case Selection in Software Testing

270

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 On the basis of the search space and model parameters,

the cluster around an optimal hypothesis (the hypotheses in

the case of a relate phase) will get stabilized. Identified are

two different criteria that are applied for the determination

during the SDS process and its search which ends: this is the

weak halting and the strong halting criteria.

The Weak Halting Criteria: this indicates the SDS to be

able to stop during a percentage of agents who are found as

active in spite of the hypothesis. This has been taken to be a

population of active agents who are steady within a margin of

tolerance for a certain number of iterations. Once these

criteria are met, the search ceases.

The Strong Halting Criteria: This indicates the state of

halt that had been connected to the agent percentage that falls

under its largest cluster. This denotes the hypothesis at the

time the agents get clustered and have a similar threshold or

rule of tolerance having a state of weak halting and when

looking at the agent percentage that is active in the largest

cluster.

IV. RESULTS AND DISCUSSION

In this section, the reference, NSGA and stochastic

diffusion methods are used. Experiments are evaluated using

10000 to 80000 cost. The print tokens and space as shown in

tables 1 & 2 and Fig 1 & 2.

Table 1 Print Tokens

Cost Referenc

e

NSGA Stochastic

Diffusion

10000 0.8 0.76 0.78

20000 0.8 0.77 0.79

30000 0.81 0.78 0.79

40000 0.85 0.8 0.82

50000 0.86 0.81 0.85

60000 0.88 0.84 0.86

70000 0.87 0.85 0.88

80000 0.88 0.87 0.88

Fig 1 Print Tokens

From the Fig 1, it can be observed that the stochastic

diffusion has higher print tokens by 2.59% for 10000 cost, by

1.27% for 30000 cost, by 4.82% for 50000 cost and by 3.47%

for 70000 cost when compared with NSGA respectively. The

stochastic diffusion has lower print tokens by 2.53% for

10000 cost, by 2.5% for 30000 cost, by 1.17% for 50000 cost

and by 1.14% for 70000 cost when compared with reference

respectively.

Table 2 Space

Cost Reference NSGA Stochastic

Diffusion

10000 0.77 0.74 0.76

20000 0.78 0.75 0.76

30000 0.8 0.76 0.77

40000 0.82 0.78 0.81

50000 0.84 0.79 0.82

60000 0.86 0.81 0.85

70000 0.86 0.83 0.85

80000 0.87 0.85 0.86

Fig 2 Space

From the Fig 2, it can be observed that the stochastic

diffusion has higher space by 2.67% for 10000 cost, by 1.31%

for 30000 cost, by 3.73% for 50000 cost and by 2.38% for

70000 cost when compared with NSGA respectively.

The stochastic diffusion has lower space by 1.31% for

10000 cost, by 3.82% for 30000 cost, by 2.41% for 50000 cost

and by 1.17% for 70000 cost when compared with reference

respectively.

V. CONCLUSION

Software testing indicates the actual process of

experimenting of program with the input data for the purpose

of observing failure. This testing will be able to identify faults

and also remove them to improve software quality. Testing

further measures the capacity of achieving the correctness,

testability, reusability, maintainability, usability, and

reliability. The selection of a test case can be called a classic

technique which chooses one more such new subject for the

current test cases used for execution because of tight

deadlines and limited budgets. This code coverage is the state

of practice which is made among the heuristics of the test

case selection. In recent literature, there is a „test case

diversity‟ that has been observed to be a very promising

approach. There was another multi-objective selection of test

case that aims at optimizing the various objective functions

simultaneously.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

271

Retrieval Number: D10551284S519/2019©BEIESP

DOI:10.35940/ijrte.D1055.1284S519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 The NSGA-II denotes the algorithm which is given in

order to solve problems in multi-objective optimization. The

NSGA-II will employ faster processes of various probabilistic

approached for solving the pattern recognition which is

best-fit. The SDS has been the algorithm multi-agent global

search optimization which is distributed for computation

based in interaction of simple agents. Results proved that the

stochastic diffusion can have higher print tokens by about

2.59% for the 10000 cost, by about 1.27% for the 30000 cost,

by about 4.82% for the 50000 cost and further by about

3.47% for about 70000 cost on being compared with the

NSGA respectively. This stochastic diffusion also has some

more lower print tokens by about 2.53% for the 10000 cost,

by about 2.5% for the 30000 cost, by about 1.17% for the

50000 cost and finally by 1.14% for the 70000 cost on being

compared to the reference respectively.

REFERENCES

1. Srivastava, P. R., & Kim, T. H. (2009). Application of genetic algorithm

in software testing. International Journal of software Engineering and its

Applications, 3(4), 87-96.

2. Sapna, P. G., & Mohanty, H. (2010, September). Clustering test cases to

achieve effective test selection. In Proceedings of the 1st Amrita ACM-W

Celebration on Women in Computing in India (p. 15). ACM.

3. Pravin, A., & Srinivasan, S. (2013). S. Srinivasan:?Effective Test Case

Selection and Prioritization in Regression Testing. In Journal of

Computer Science, 9 (5), 654-659.

4. Narciso, E. N., Delamaro, M. E., & Nunes, F. D. L. D. S. (2014). Test

case selection: A systematic literature review. International Journal of

Software Engineering and Knowledge Engineering, 24(04), 653-676.

5. Mondal, D., Hemmati, H., & Durocher, S. (2015, April). Exploring test

suite diversification and code coverage in multi-objective test case

selection. In 2015 IEEE 8th International Conference on Software

Testing, Verification and Validation (ICST) (pp. 1-10). IEEE.

6. Matnei Filho, R. A., & Vergilio, S. R. (2016). A multi-objective test data

generation approach for mutation testing of feature models. Journal of

Software Engineering Research and Development, 4(1), 1-29.

7. Kazmi, R., Jawawi, D. N., Mohamad, R., Ghani, I., & Younas, M.

(2017). A Test Case Selection Framework and Technique: Weighted

Average Scoring Method. Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), 9(3-4), 15-22.

8. Shin, K. W., & Lim, D. J. (2018). Model-based automatic test case

generation for automotive embedded software testing. International

Journal of Automotive Technology, 19(1), 107-119.

9. Ali, S., Briand, L. C., Hemmati, H., & Panesar-Walawege, R. K. (2010).

A systematic review of the application and empirical investigation of

search-based test case generation. IEEE Transactions on Software

Engineering, 36(6), 742-762.

10. Wang, S., Ali, S., Yue, T., Li, Y., & Liaaen, M. (2016, May). A practical

guide to select quality indicators for assessing pareto-based search

algorithms in search-based software engineering. In 2016 IEEE/ACM

38th International Conference on Software Engineering (ICSE) (pp.

631-642). IEEE.

11. Wang, S., Ali, S., Yue, T., Bakkeli, Ø., & Liaaen, M. (2016, May).

Enhancing test case prioritization in an industrial setting with resource

awareness and multi-objective search. In Proceedings of the 38th

International Conference on Software Engineering Companion (pp.

182-191). ACM.

12. Guizzo, G., Fritsche, G. M., Vergilio, S. R., & Pozo, A. T. R. (2015,

July). A hyper-heuristic for the multi-objective integration and test order

problem. In Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation (pp. 1343-1350). ACM.

13. Panichella, A., Oliveto, R., Di Penta, M., & De Lucia, A. (2015).

Improving multi-objective test case selection by injecting diversity in

genetic algorithms. IEEE Transactions on Software Engineering, 41(4),

358-383.

14. Saber, T., Delavernhe, F., Papadakis, M., O'Neill, M., & Ventresque, A.

(2018, July). A hybrid algorithm for multi-objective test case selection. In

2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8).

IEEE.

15. Li, X., Wong, W. E., Gao, R., Hu, L., & Hosono, S. (2018). Genetic

algorithm-based test generation for software product line with the

integration of fault localization techniques. Empirical Software

Engineering, 23(1), 1-51.

16. Garousi, V., Özkan, R., & Betin-Can, A. (2018). Multi-objective

regression test selection in practice: An empirical study in the defense

software industry. Information and Software Technology, 103, 40-54.

17. Agrawal, A. P., & Kaur, A. (2018). A comprehensive comparison of ant

colony and hybrid particle swarm optimization algorithms through test

case selection. In Data Engineering and Intelligent Computing (pp.

397-405). Springer, Singapore.

18. Gonsalves, T., & Itoh, K. (2010, March). Multi-objective optimization for

software development projects. In International multiconference of

engineers and computer scientists (pp. 17-19).

19. Yoo, S., & Harman, M. (2007, July). Pareto efficient multi-objective test

case selection. In Proceedings of the 2007 international symposium on

Software testing and analysis (pp. 140-150). ACM.

20. Padhee, S., Nayak, N., Panda, S. K., Dhal, P. R., & Mahapatra, S. S.

(2012). Multi-objective parametric optimization of powder mixed

electro-discharge machining using response surface methodology and

non-dominated sorting genetic algorithm. Sadhana, 37(2), 223-240.

21. Golchha, A., & Qureshi, S. G. (2015). Non-dominated sorting genetic

algorithm-II–A succinct survey. International Journal of Computer

Science and Information Technologies, 6(1), 252-255.

22. Al-Rifaie, M. M., & Bishop, J. M. (2013). Stochastic diffusion search

review. Paladyn, Journal of Behavioral Robotics, 4(3), 155-173.

al-Rifaie, M. M., Bishop, J. M., & Blackwell, T. (2012). Information

sharing impact of stochastic diffusion search on differential evolution

algorithm. Memetic Computing, 4(4), 327-338.

