
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-4S2, December 2019

729

Retrieval Number: D11301284S219/2019©BEIESP

DOI: 10.35940/ijrte.D1130.1284S219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Mining Severe Priority Bugs in Software

Maintenance

Satish C J, Thendral Puyalnithi

 Abstract: Maintenance of open source software is a hectic task

as the number of bugs reported is huge. The number of projects,

components and versions in an open source project also

contribute to the number of bugs that are being reported.

Classification of bugs based on priority and identification of the

suitable engineers for assignment of bugs for such huge systems

still remains a major challenge. Bugs that are misclassified or

assigned to engineers who don’t have the component expertise,

drastically affect the time taken towards bug resolution. In this

paper we have explored the usage of data mining techniques on

the classification of bugs and assignment of bugs to

engineers.Our focus was on classifying bugs as either severe or

non-severe and identification of engineers who have the right

expertise to fix the bugs. The prediction of bug severity and

identification of engineers were done by mining bug reports from

JIRA, an open source software bug tracking tool. The mining

process yielded positive results and will be a decision enhancer

for severe bugs in the maintenance phase.

 Keywords: Mining Software Repository, Data Mining,

Software Maintenance.

I. INTRODUCTION

A software system undergoes lot of changes during the

software maintenance phase. The changes can be either

change requests or bugs. Bugs are usually classified as

severe, high, medium or low priority bugs. The priority

denotes the severity of the bug and its impact on the
business. Severe bugs are those which act as a blocker to the

system execution and they need an emergency fix. All bugs

that are reported should be fixed by the maintenance

engineers within a given time period as mentioned in a

Service Level Agreement.

Bug tracking systems are used for managing bugs.

Whenever a system user identifies a bug, the user reports the

bug using the bug tracking system.Based on the severity of

the bug the user assigns a priority to the bug. Bugs that are

reported are later assigned to maintenance engineers by

project managers who manage the project. Most often the

users who report the bug report a bug as a severe bug when
it’s actually a medium or low priority bug. If a reported

severe priority bug is found to be of a lower priority upon

analysis, the maintenance engineers can downgrade the

priority of the bug after informing the user who reported the

bug. The problem with this approach is that engineers spend

time analyzing a low priority bug as a severe bug and this

hampers the fixing of actual severe bugs.Another important

problem with respect to bug fixing is identifying the right

person who can fix a bug. Most often the assignment of

bugs to engineers is done based on the workload of each

engineer. As severe bugs need an immediate fix, only
engineers who have a good experience in handling such

Revised Manuscript Received on December 05, 2019
 Satish C J, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore

 Thendral Puyalnithi,

Kalasalingam Academy of Research and

Education, Krishnankoil

bugs can provide a quick resolution. Assignment of severe

bugs to engineers who don’t have the right experience levels
can lead to poor fixes or reassignment of bugs[1]. A delay in

fixing a severe priority bug has a very high level of impact

on the business and can decrease customer

satisfaction[2][3].

Bug classification and assignment has been addressed by

researchers in the past[3][4][5].Such studies considered all

bugs to be of equal importance and were not focused on

mining severe bugs. Our approach deals with addressing

these issues on severe priority bugs by mining bug reports.

We have provided mining as an approach for classification

of bugs as either severe or non-severe. Such a classification
of reported bugs can prevent assignment of low priority

bugs as severe priority. Identification of the best person to

assign a severe bug is also achieved by mining the past

history on bug fixes.

1. Mining Process
We have used bug reports on QT which is open source

software. Bug management for QT is done using JIRA, a

bug tracking tool developed by Australian Company

Atlassian [6].The important steps in our mining process are

given below

 Extraction of Bug Reports from JIRA

 Import of Bug Reports in SQL Server Database

 Preprocessing Bug Reports

 Creation of Mining Models using SQL Server

Analysis Services.
The bugs were either classified as severe or non-severe. We

have also identified the assignees that are best suitable for

both severe and non-severe bugs. Bugs that are classified as

severe will be assigned to assignees that have been

identified for fixing severe bugs using our mining method.

This approach enables the handling of severe bugs

effectively without any delay by utilizing the best person to

fix the bug. This will reduce the downtime of the system and

improve customer satisfaction on the supported business.

2.1 Extraction of Bug Reports from JIRA

The bug reports were extracted from bug tracking tool JIRA

as Excel Files.As Jira was configured to allow only
downloads of thousand bugs per report, there was a need to

download many reports. Our approach was to download bug

reports for every month, as the number of bugs reported for

every month was lesser than thousand. Reports for the last

five years were extracted as excel files from JIRAtool.

Using an excel macro to merge files; the individual reports

were merged as one single excel file. The merged report had

43840 rows and 71 columns.

2.2 Import of Bug Reports in SQL Server Database

The import of the merged bug report in to SQL Server

database was achieved using the SQL Server 2016
import/export wizard. The contents of the merged excel file

was loaded in to the relational

table QT on SQL Server.

Mining Severe Priority Bugs in Software Maintenance

730

Retrieval Number: D11301284S219/2019©BEIESP

DOI: 10.35940/ijrte.D1130.1284S219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

2.3 Preprocessing Bug Reports

The report had 71 columns and many columns were filled

with only null values.35 columns did not have any values

and hence all the columns were dropped from our QT table.

The remaining columns were thoroughly scrutinized and

only the columns mentioned in Table 1 were deemed
relevant to the mining process

Table 1: Columns Identified for Mining

Column Name Definition

ID Primary Key

Project Contains Project names

of projects handled for

QT framework like Qt

Creator,Qt Installer

Framework,Qt Mobility

etc.

Reporter Name of the person who

reported the bug

Issue Type Classifies the reported

issue as bug, suggestion,

task etc

Status Holds statuses for the

reported issue like open
,closed,

 in progress etc.

Priority Holds the information on

the severity of the issue.

Component Holds the component

names specific to the

issue

Affects Version Holds the version names

for which the issue is

reported

Assignee Holds the name of the

assignee that is assigned

the bug

For the mining process we had to focus only on bugs that

had the status has closed. All bugs that were not having the

closed status were removed from the table. A total of 15474

bugs were removed from the table as they were not having
the closed status.

Priority was maintained using the following priority levels

in JIRA.

 P0: Blocker

 P1: Critical

 P2: Important

 P3: Somewhat important

 P4: Low

 P5: Not important

Figure 1: Mining Process

All bugs with priority P0 and P1 were updated with priority

as Severe and all other bugs were updated with priority as

Non-Severe in the QT

table on SQL Server Database. On further analysis for the

null values on the shortlisted columns, component column

was found to have 305 rows as null values and hence all the
305 rows were deleted from the table.

Thus as part of data preprocessing all the irrelevant columns

and rows containing null values were completely removed.

Only bugs with the closed status were retained.

2.4 Creation of Mining Models for classifying bugs as

severe or non-severe.

SQL Server Analysis Services were used for generation of

mining models using the QT table. The first mining process

was focused on predicting priority of a reported bug. The

input and output parameters selected for the mining process

is given in table 2.

Table 2: Input and Output Parameters

Parameters Input/output

ID Key Column

Project Input

Reporter Input

Issue Type Input

Priority Predict [Output]

Component Input

Affects Version Input

Mining models were created using the following algorithms

 Decision Trees

 Naïve Bayes

 Clustering

 Association

 Neural Network

A generated decision tree for three levels is shown in figure

2

Figure 2: Decision Tree [3 Levels]

Decision Tree is also shown using Microsoft Generic

content tree viewer in figure 3.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-4S2, December 2019

731

Retrieval Number: D11301284S219/2019©BEIESP

DOI: 10.35940/ijrte.D1130.1284S219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Figure 3: Decision Tree –Generic Content Tree Viewer

The comparison of all algorithms with respect to predicting

severe bugsis shown in figure 4 as a lift chart. Figure 5

contains the mining legend of the comparison.

Figure 4: Lift Chart [Severe Bugs]

Figure 5: Mining Legend [Severe Bugs]

The comparison of all algorithms with respect to predicting

non-severe bugs is shown in figure 6 as a lift chart and

figure 7 depicts the mining legend of the comparison

Figure 6: Lift Chart [Non Severe Bugs]

Figure 7: Mining Legend [Non Severe Bugs]

2.5 Creation of Mining Models for classifying assignees

for Severe and Non-Severe Bugs

The main objective behind this mining is the identification
of Assignees that can work on a severe bug or a non-severe

bug We have applied Association Rule mining to generate

all the associations between Assignees, component, project

and priority. For severe bugs the support count is maintained

at 40 and minimum probability is 0.42. The list of rules that

satisfy the minimum support provide us with details of

experienced assignee for each component in every project.

Whenever a bug is classified as severe based on our

previous analysis then that bug can be assigned to an

assignee using the association rules generated in this step. A

part of the association rules generated for severe bugs is
given in figure 8.

Figure 8: Association Rule Viewer

Mining Severe Priority Bugs in Software Maintenance

732

Retrieval Number: D11301284S219/2019©BEIESP

DOI: 10.35940/ijrte.D1130.1284S219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Association rules between component, project assignee and

non-severe bugs can be identified and used for assigning

classified non-severe bugs.

II. DISCUSSION

The decision making process on severe bugs in the software

maintenance phase will be enhanced by the mining of bug
reports. Our objective was to improve the handling of severe

bugs in software maintenance so that system downtime is

reduced by classifying and assigning bugs to the best

suitable engineers.

The mining models used for such classification provided us

with a greater insight on classification of bugs. Severity of a

bug depends on the project, component, version, issue type

andreporter. It is observed that certain components always

receive non-severe bugs and certain reporters only report

non-severe bugs. When bugs are reported for such

components or raised by such reporters it can be directed to

engineers who are identified to work on non-severe bugs.
Whereas the bugs arising out of components and reporters

who report a majority of the severe bugs can be assigned to

engineers who are identified to work on severe bugs.

The classification models have given us an opportunity to

explore the hidden knowledge on the factors that affect the

severity of a bug. The comparison of the various algorithms

reveals that Naïve Bayes is more effective in classification

of severe bugs in the test data and the mining legend shows

that the classification was good for almost 74% of the

targeted population.

III. CONCLUSION

The use of datamining technique for classification and

assignment of severe bugs not only aids the decision making

process but also uncovers a lot of factors that contribute to

the severity levels of a bug. Such a mining model not only

helps in classification of bugs but also gives us information

on the projects, components, versions that contribute to the

maximum number of severe bugs. Corrective action could

be taken to reduce the number of severe bugs on such

projects. The mining models also enable the identification of

the pool of resources that are skilled in fixing severe bugs

for each version, each component in every project. Thus

application of mining models in software maintenance for
mining severe priority bugs brings us the promise of system

down time reduction through effective resource utilization.

REFERENCES

1. Shao, Qihong, et al. "Efficient ticket routing by resolution sequence

mining." Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2008.

2. Ohira, Masao, et al. "A dataset of high impact bugs: manually-

classified issue reports." 2015 IEEE/ACM 12th Working Conference

on Mining Software Repositories. IEEE, 2015.

3. Lamkanfi, Ahmed, and Serge Demeyer. "Predicting reassignments of

bug reports-an exploratory investigation." Software Maintenance and

Reengineering (CSMR), 2013 17th European Conference on. IEEE,

2013.

4. Zhou, Yu, et al. "Combining text mining and data mining for bug report

classification." Journal of Software: Evolution and Process (2016).

5. Tian, Yuan, David Lo, and Chengnian Sun. "Drone: Predicting priority

of reported bugs by multi-factor analysis." (2013): 200.

6. QT issues download page
7. https://bugreports.qt.io/browse/QTWEBSITE-745?jql=.

