International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-4S2, December 2019

Mining Severe Priority Bugs in Software
Maintenance

Satish C J, Thendral Puyalnithi

Abstract: Maintenance of open source software is a hectic task
as the number of bugs reported is huge. The number of projects,
components and versions in an open source project also
contribute to the number of bugs that are being reported.
Classification of bugs based on priority and identification of the
suitable engineers for assignment of bugs for such huge systems
still remains a major challenge. Bugs that are misclassified or
assigned to engineers who don’t have the component expetrtise,
drastically affect the time taken towards bug resolution. In this
paper we have explored the usage of data mining techniques on
the classification of bugs and assignment of bugs to
engineers.Our focus was on classifying bugs as either severe or
non-severe and identification of engineers who have the right
expertise to fix the bugs. The prediction of bug severity and
identification of engineers were done by mining bug reports from
JIRA, an open source software bug tracking tool. The mining
process yielded positive results and will be a decision enhancer
for severe bugs in the maintenance phase.

Keywords: Mining Software Repository,
Software Maintenance.

Data Mining,

I. INTRODUCTION

A software system undergoes lot of changes during the
software maintenance phase. The changes can be either
change requests or bugs. Bugs are usually classified as
severe, high, medium or low priority bugs. The priority
denotes the severity of the bug and its impact on the
business. Severe bugs are those which act as a blocker to the
system execution and they need an emergency fix. All bugs
that are reported should be fixed by the maintenance
engineers within a given time period as mentioned in a
Service Level Agreement.

Bug tracking systems are used for managing bugs.
Whenever a system user identifies a bug, the user reports the
bug using the bug tracking system.Based on the severity of
the bug the user assigns a priority to the bug. Bugs that are
reported are later assigned to maintenance engineers by
project managers who manage the project. Most often the
users who report the bug report a bug as a severe bug when
it’s actually a medium or low priority bug. If a reported
severe priority bug is found to be of a lower priority upon
analysis, the maintenance engineers can downgrade the
priority of the bug after informing the user who reported the
bug. The problem with this approach is that engineers spend
time analyzing a low priority bug as a severe bug and this
hampers the fixing of actual severe bugs.Another important
problem with respect to bug fixing is identifying the right
person who can fix a bug. Most often the assignment of
bugs to engineers is done based on the workload of each
engineer. As severe bugs need an immediate fix, only
engineers who have a good experience in handling such

Revised Manuscript Received on December 05, 2019

Satish C J, School of Computer Science and Engineering, Vellore
Institute of Technology, Vellore

Thendral Puyalnithi, Kalasalingam Academy of Research and
Education, Krishnankoil

Retrieval Number: D113012845219/2019©BEIESP
DOI: 10.35940/ijrte.D1130.1284S219

729

bugs can provide a quick resolution. Assignment of severe
bugs to engineers who don’t have the right experience levels
can lead to poor fixes or reassignment of bugs[1]. A delay in
fixing a severe priority bug has a very high level of impact
on the business and can decrease customer
satisfaction[2][3].

Bug classification and assignment has been addressed by
researchers in the past[3][4][5].Such studies considered all
bugs to be of equal importance and were not focused on
mining severe bugs. Our approach deals with addressing
these issues on severe priority bugs by mining bug reports.
We have provided mining as an approach for classification
of bugs as either severe or non-severe. Such a classification
of reported bugs can prevent assignment of low priority
bugs as severe priority. Identification of the best person to
assign a severe bug is also achieved by mining the past
history on bug fixes.

1. Mining Process
We have used bug reports on QT which is open source
software. Bug management for QT is done using JIRA, a
bug tracking tool developed by Australian Company
Atlassian [6].The important steps in our mining process are
given below

= Extraction of Bug Reports from JIRA

= Import of Bug Reports in SQL Server Database

= Preprocessing Bug Reports

= Creation of Mining Models using SQL Server

Analysis Services.

The bugs were either classified as severe or non-severe. We
have also identified the assignees that are best suitable for
both severe and non-severe bugs. Bugs that are classified as
severe will be assigned to assignees that have been
identified for fixing severe bugs using our mining method.
This approach enables the handling of severe bugs
effectively without any delay by utilizing the best person to
fix the bug. This will reduce the downtime of the system and
improve customer satisfaction on the supported business.
2.1 Extraction of Bug Reports from JIRA
The bug reports were extracted from bug tracking tool JIRA
as Excel Files.As lJira was configured to allow only
downloads of thousand bugs per report, there was a need to
download many reports. Our approach was to download bug
reports for every month, as the number of bugs reported for
every month was lesser than thousand. Reports for the last
five years were extracted as excel files from JIRAtool.
Using an excel macro to merge files; the individual reports
were merged as one single excel file. The merged report had
43840 rows and 71 columns.
2.2 Import of Bug Reports in SQL Server Database
The import of the merged bug report in to SQL Server
database was achieved using the SQL Server 2016
import/export wizard. The contents of the merged excel file
was loaded in to the relational
table QT on SQL Server.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Mining Severe Priority Bugs in Software Maintenance

2.3 Preprocessing Bug Reports
The report had 71 columns and many columns were filled
with only null values.35 columns did not have any values
and hence all the columns were dropped from our QT table.
The remaining columns were thoroughly scrutinized and
only the columns mentioned in Table 1 were deemed
relevant to the mining process
Table 1: Columns Identified for Mining
Column Name Definition
ID Primary Key
Project Contains Project names
of projects handled for
QT framework like Qt
Creator,Qt Installer
Framework,Qt Mobility
etc.
Name of the person who
reported the bug
Classifies the reported
issue as bug, suggestion,
task etc
Holds statuses for the
reported issue like open
,closed,
in progress etc.
Holds the information on
the severity of the issue.
Holds the component
names specific to the
issue
Holds the version names
for which the issue is
reported
Holds the name of the
assignee that is assigned
the bug
For the mining process we had to focus only on bugs that
had the status has closed. All bugs that were not having the
closed status were removed from the table. A total of 15474
bugs were removed from the table as they were not having
the closed status.
Priority was maintained using the following priority levels
in JIRA.

Reporter

Issue Type

Status

Priority

Component

Affects Version

Assignee

PO: Blocker

P1: Critical

P2: Important

P3: Somewhat important
P4: Low

» P5: Not important
Figure 1: Mining Process

Retrieval Number: D113012845219/2019©BEIESP
DOI: 10.35940/ijrte.D1130.1284S219

730

All bugs with priority PO and P1 were updated with priority
as Severe and all other bugs were updated with priority as
Non-Severe in the QT
table on SQL Server Database. On further analysis for the
null values on the shortlisted columns, component column
was found to have 305 rows as null values and hence all the
305 rows were deleted from the table.
Thus as part of data preprocessing all the irrelevant columns
and rows containing null values were completely removed.
Only bugs with the closed status were retained.
2.4 Creation of Mining Models for classifying bugs as

severe or non-severe.
SQL Server Analysis Services were used for generation of
mining models using the QT table. The first mining process
was focused on predicting priority of a reported bug. The
input and output parameters selected for the mining process
is given in table 2.

Table 2: Input and Output Parameters

Parameters Input/output

ID Key Column
Project Input

Reporter Input

Issue Type Input

Priority Predict [Output]
Component Input

Affects Version Input

Mining models were created using the following algorithms
= Decision Trees
= Naive Bayes
= Clustering
= Association
= Neural Network
A generated decision tree for three levels is shown in figure
2

leTipe
= Yot
i —— Rt
< il ol
[E— I e [m——
gl T
T Rt

= ol At Bl

Figure 2: Decision Tree [3 Levels]

Decision Tree is also shown using Microsoft Generic
content tree viewer in figure 3.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8, Issue-4S2, December 2019

,@ Mining Structure ;\ Mining Models lﬁ-‘l WL =N 73 Mining Accuracy Chart S Mining Model Prediction

Mining Model: | Dedsion Trees ¥ Viewer; Mirosoft Generic Content Tree Viewer ~ 1

Node Caption {Unique ID) /i

=)
Al (000000003)
Issue Type = 'Suggestion’ (00000000300)
- Tssue Type not = 'Suggestion' (00000000301)
~Reporter ='Eskl Abrahamsen Blomfeldt’ (0000000030100)
- Reporter not = 'Eskil Abrahamsen Blomfeldt’ (000000030101)

‘- Component = Packaging & Installer’ (000000003010100)
= Component not = Packaging & Installer' (000000003010101)
Reporter = Eike Ziller' (00000000301010100)
5-Reporter not = Bke Ziler' (00000000301010101)
- Project ='Qt (0000000301010 10100)
i ~Component = Documentation' (J00000003010101010000)
=S C:omponent not = Documentation’ (000000003010101010001) 0 20 40
- Affects Version ='4.8.2 (00000000301010101000100)
[Affects Version not ='4,8,2 (00000000301010101000101)
Component = 'Core: Date/Time' (0000000030101010100010100)

Data Mining Lift Chart for Mining Structure: Qt Closed

Target Population [NotSevere] %

60 80 100
Overall Population %

5 Campanent nat = Core: Date/Time! (J000000030101010100010101) v
-~ Affects Version ='4.7.4 (000000003010101010001010100) clustering — ldeal Mode! for: Decision Trees, association, clustering, Naive Bayes, Neural Netwerk
- Affiects Version not = '4.7.4 (000000003010101010001010101) Naive Bayes
M Rrninct ek = 'OF IOOOAOOA1A1AIA1ATY
Figure 3: Decision Tree —-Generic Content Tree Viewer Figure 6: Lift Chart [Non Severe Bugs]
The comparison of all algorithms with respect to predicting Mining Legend - A X

severe bugsis shown in figure 4 as a lift chart. Figure 5

. - . Population percentage: 49.50%
contains the mining legend of the comparison.

Series, Model Score Target population Predict probability
Data Mining Lift Chart for Mining Structure: Ct Closed Decision Trees 080 5301% 81.43%
100 ‘ , I association 0.85 30.64% 82.27%
/ , clustering 089 53.65% 82.81%
iy / - Naive Bayes 0.91 B4.61%
'g / i // Meural Network 0.90 86.50%
,“E " / P // I Random Guess Model
5 | } // I Ideal Model for: Decisio... 61.20%
1 7
E 4 / : / - . ..
F ; 7 Figure 7: Mining Legend [Non Severe Bugs]
¢ 2
‘g / ‘ // 2.5 Creation of Mining Models for classifying assignees
L 7 for Severe and Non-Severe Bugs
£ The main objective behind this mining is the identification
0 of Assignees that can work on a severe bug or a non-severe
0 bl I (] il 100 bug We have applied Association Rule mining to generate
Overal Population % all the associations between Assignees, component, project
and priority. For severe bugs the support count is maintained
Desion Trees el Hetor at 40 and minimum probability is 0.42. The list of rules that
= gssociaion = Random Guess Model
clustering = Ijeal Model for: Decision Trees, association, clustening, Narve Bayes, Neural Netwark SaUSfY the mm_lmum SUppOI’t prowde US.W":h detall? of
Nive Bayes experienced assignee for each component in every project.
_) Whenever a bug is classified as severe based on our
Figure 4: Lift Chart [Severe Bugs] previous analysis then that bug can be assigned to an
Mining Legend =B assignee using the association rules generated in this step. A
Population percentage: 4.50% part of the association rules generated for severe bugs is
Series, Model Score Target population Predict probability glven In flgure 8
. Minimum probability: 0.42 |% FiterRule: ‘
Decision Trees 0.66 61.51% 18.57%
. Minimum impor tance: L06 |5 Show: Shaw attribute name and value
I association 0.53 45.83% 17.73%
[] Show lang name Maximum rows: 000 [
clustering 0.69 66.88% 17.24%
X ¥ Pr. Importance Rule
NENEBE}IES 0.74 72.53% 13.61% 054 [N :riconent = Guild System -> Assignes = Oswald Buddenhagen
Neural Network 071 £8.229% 13.40% 0520 [N corvoonent = GUI: macOS (cocoa) integration, Project = Qt -> Assignee = Morten Sgrvig

0.529 _ Companent = GUI: macOS (cocoa) integration -» Assignee = Morten Srvig
0.4 [oot = VVebkit -> Assignee = Alan Sandfeld Jensen
. o455 | orvporent = Viebkit, Project = Gt -> Assignee = Allan Sandfeld Jensen

I Ideal Model for: Decisio... 100.00% 0472 | :orvonent = Documentation, Project = Gt -> Assignee = Martin Smith
o471 | : - component = GiRorts: Android -> Assignee = Eski Abrahamsen Blom feldt
o471 | : - corponent = QiPorts: Android, Project = Qt > Assignee = Eskil Abrahamsen Blomfeldt

H . H% 041 [N :orioonent - Project &Buld Management -> Assignee = Daniel Teske
F I g ure 5 . M ni ng Lege nd [Seve re B UgS] 041 [N orioonent = Project &Buid Management, Project = Gt Creator - Assignee = Daniel Teske
0.458 _ Component = Qt 3D, Project = Qt -> Assignee = Sean Harmer

I Random Guess Model

The comparison of all algorithms with respect to predicting 055 N Corrert = i > s = eanHamer

. . . 4z N oo = Documentaton -» Assignee = Mertin i
non-severe bugs is shown in figure 6 as a lift chart and Pl
figure 7 depicts the mining legend of the comparison oss: I ¢ = > g =D S

0422 | corvconent - Al Other ssues - Assignes = Eike Ziler
042 _ Component = Al Other Issues, Project = Qt Creator - Assignee = Eke Ziler

Figure 8: Association Rule Viewer

Retrieval Number: D113012845219/2019©BEIESP Published By:

DOI: 10.35940/ijrte.D1130.12845219 731 leée Eyes lrlljte:)lli_gen_ce Engineering
ciences Publication

Mining Severe Priority Bugs in Software Maintenance

Association rules between component, project assignee and
non-severe bugs can be identified and used for assigning
classified non-severe bugs.

Il. DISCUSSION

The decision making process on severe bugs in the software
maintenance phase will be enhanced by the mining of bug
reports. Our objective was to improve the handling of severe
bugs in software maintenance so that system downtime is
reduced by classifying and assigning bugs to the best
suitable engineers.

The mining models used for such classification provided us
with a greater insight on classification of bugs. Severity of a
bug depends on the project, component, version, issue type
andreporter. It is observed that certain components always
receive non-severe bugs and certain reporters only report
non-severe bugs. When bugs are reported for such
components or raised by such reporters it can be directed to
engineers who are identified to work on non-severe bugs.
Whereas the bugs arising out of components and reporters
who report a majority of the severe bugs can be assigned to
engineers who are identified to work on severe bugs.

The classification models have given us an opportunity to
explore the hidden knowledge on the factors that affect the
severity of a bug. The comparison of the various algorithms
reveals that Naive Bayes is more effective in classification
of severe bugs in the test data and the mining legend shows
that the classification was good for almost 74% of the
targeted population.

I1l. CONCLUSION

The use of datamining technique for classification and
assignment of severe bugs not only aids the decision making
process but also uncovers a lot of factors that contribute to
the severity levels of a bug. Such a mining model not only
helps in classification of bugs but also gives us information
on the projects, components, versions that contribute to the
maximum number of severe bugs. Corrective action could
be taken to reduce the number of severe bugs on such
projects. The mining models also enable the identification of
the pool of resources that are skilled in fixing severe bugs
for each version, each component in every project. Thus
application of mining models in software maintenance for
mining severe priority bugs brings us the promise of system
down time reduction through effective resource utilization.

REFERENCES

1. Shao, Qihong, et al. "Efficient ticket routing by resolution sequence
mining." Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2008.

2. Ohira, Masao, et al. "A dataset of high impact bugs: manually-
classified issue reports.” 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. IEEE, 2015.

3. Lamkanfi, Ahmed, and Serge Demeyer. "Predicting reassignments of
bug reports-an exploratory investigation." Software Maintenance and
Reengineering (CSMR), 2013 17th European Conference on. IEEE,
2013.

4. Zhou, Yu, etal. "Combining text mining and data mining for bug report
classification." Journal of Software: Evolution and Process (2016).

5. Tian, Yuan, David Lo, and Chengnian Sun. "Drone: Predicting priority
of reported bugs by multi-factor analysis." (2013): 200.

6. QT issues download page

7. https://bugreports.qt.io/browse/QTWEBSITE-745?jql=.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D113012845219/2019©BEIESP
DOI: 10.35940/ijrte.D1130.1284S219 732

