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Abstract: In this paper, we obtain some upper bounds for the 

divisor degree energy of some special graphs such as total graph, 

central graph and Q(G). 
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I. INTRODUCTION 

Let us assume that the graph to be a simple graph 

),( mnG and id be a degree of a vertex iv . 

Gutman [3] was the first to introduce that ))(()( GAEGE  , 

where )(GA is the adjacency matrix of a graph G. 

The energy, )(GE , of a graph G is defined in [2] to be the 

sum of the absolute values of its eigenvalues. Hence if )(GA  

is the adjacency matrix of G, and n ,...,, 21 are the 

eigenvalues of )(GA , then 
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i
i
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1

)(  . With the 

motivation of Energy, we defined a new energy named 

divisor degree energy as follows: 

 The divisor degree matrix )(GDD , a real symmetric matrix 

with n  vertices, is defined in [4] as 
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where  x is the integral part of real number x . Then the 

nn real symmetric matrix has its eigenvalues in 

non-increasing order as n  ...21 , where 1  is the 

spectral  radius of divisor degree matrix of G .   

 

 

 

 

 

 

 

 

 
Revised Manuscript Received on December 16, 2019.  

Dr. K. Nagarajan, Professor, Mathematics, Kalasalingam university, 

Krishnankoil. 

S. P. Kanniga Devi, Research Scholar, Department Of Mathematics In Sri 

S. Ramasamy Naidu Memorial College, Sattur. 

From the characteristic polynomial )(GDDI  , we get 

the eigenvalues of )(GDD .  The divisor degree energy 

)(DDE of a graph is defined as 



n

i

iDD GE
1

)(  . 

Example 1.1.Consider a graph G  

 

The divisor degree matrix of the graph G is 
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)(GDD  

Now, )(GDDI  =  45 24  . Then the 

eigenvalues of )(GDD are 2.562, - 1.562, -1 and 0 

respectively. 

Thus, .124.5)( GEDD  

The following definition in [1] is one of the special graph that 

is needed for the later part of this paper. 

For a connected graph G , )(GQ is defined as subdivision of 

edges of G and joining the edges of new vertices on adjacent 

edges of G . 

II.  SOME UPPER BOUNDS FOR THE DIVISOR 

DEGREE ENERGY OF TOTAL GRAPH OF SOME 

SPECIAL GRAPHS 

In this section, we obtain some upper bounds for the divisor 

degree energy of total graph of some basic graphs - path 

graph, cycle graph and star graph. 

Theorem 2.1. Let )( rPT be a total graph of path graph of 

order 12 r , where r denotes the number of vertices of  

path graph )2(, rPr . Then 
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)14(2)))((()( 2  rPTDDtri r  

.)14)(12(2))(()(  rrPTEii rDD  

Proof.  )(i  The divisor degree matrix of )( rPT is 
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)(ii Using Cauchy-Schwarz inequality, 
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Therefore,  .)14)(12(2))((  rrPTE rDD  

Theorem 2.2. Let )( rCT be a total graph of cycle graph of 

order r2 , )2( r . Then  

rCTDDtri r 8)))((()( 2   

.4))(()( rCTEii rDD   

Proof.  )(i  The divisor degree matrix of )( rCT is 
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)(ii Using Cauchy-Schwarz inequality, 
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Theorem 2.3. Let )( 1,1 rKT be a total graph of star graph 

of order 12 r . Then 
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Proof.  )(i  The divisor degree matrix of )( 1,1 rKT is 
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)(ii  Using Cauchy-Schwarz inequality 
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III. SOME UPPER BOUNDS FOR THE DIVISOR 

DEGREE ENERGY OF CENTRAL GRAPH OF SOME 

BASIC GRAPHS 

In this division, we obtain some upper bounds for the divisor 

degree energy of central graph of some basic graphs - path 

graph, cycle graph and star graph. 

 Theorem 3.1. Let )( rPC be central graph of path graph of 

order )2(,12  rr . Then 
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Proof.  )(i  The divisor degree matrix of )( rPC is 
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)(ii  Using Cauchy-Schwarz inequality 
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Theorem 3.2. Let )( rCC be central graph of cycle graph of 

order )3(2 rr . Then 
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Proof.  )(i  The divisor degree matrix of )( rCC is 
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)(ii  Using Cauchy-Schwarz inequality 
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Theorem 3.3. Let )( 1,1 rKC be central graph of star graph 

of order )2(12  rr . Then 
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Proof.  )(i  The divisor degree matrix of )( 1,1 rKC is 
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)(ii  Using Cauchy-Schwarz inequality 
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IV. SOME UPPER BOUNDS FOR THE DIVISOR 

DEGREE ENERGY OF Q(G) OF SOME BASIC 

GRAPHS 

In this part, we obtain some upper bounds for the divisor 

degree energy of )(GQ of some basic graphs - path graph, 

cycle graph and star graph. 

Theorem 4.1. Let )( rPQ be a graph of order 12 r , 

)2( r . Then )23(6)))((()( 2  rPQDDtri r  

.)23)(12(6))(()(  rrPQEii rDD  

Proof.  )(i  The divisor degree matrix of )( rPQ is 
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)(ii Using Cauchy-Schwarz inequality, 
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Theorem 4.2. Let )( rCQ be a graph of order r2 . Then 

rCQDDtri r 52)))((()( 2   
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Proof.  )(i  The divisor degree matrix of )( rCQ is 
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Theorem 4.3. Let )( 1,1 rKQ be a graph of order 12 r , 

)2( r . Then 
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Proof.  )(i  The divisor degree matrix of )( 1,1 rKQ is 









































0111110000

1011110000

1101110000

1101010000

1111010000

11111000000

0000000000

0000000000

0000000000

0000000000

0000000000



























r

r

r

r

r

r

r

r

r

r

 

)12)(1(

)1
2

()1(
2

)1(
2

)))1,1(((





rrr

rrrrrrKQDDtr
 

(ii) Using Cauchy-Schwarz inequality, 
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