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Some Upper Bounds for the Divisor Degree
Energy of some Special Graphs

K. Nagarajan, S. P. Kanniga Devi

Abstract: In this paper, we obtain some upper bounds for the
divisor degree energy of some special graphs such as total graph,
central graph and Q(G).
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I. INTRODUCTION

Let us assume that the graph to be a simple graph
G(n,m)and d; be a degree of a vertex V; .

Gutman [3] was the first to introduce that E(G) = E(A(G)),
where A(G) is the adjacency matrix of a graph G.

The energy, E(G), of a graph G is defined in [2] to be the
sum of the absolute values of its eigenvalues. Hence if A(G)

is the adjacency matrix of G, and A,,4,,..., 4, are the

n
eigenvalues of A(G), then E(G) = Y, ‘/Ii‘.With the
i=1

motivation of Energy, we defined a new energy named
divisor degree energy as follows:
The divisor degree matrix DD(G) , a real symmetric matrix

with N vertices, is defined in [4] as

d; dy
— |+| — | if vj.vy areadjacentand d; = d
dy di

dd. =<1 if vj, vy areadjacentand d; = d,

0 otherwise

where [X] is the integral part of real number X. Then the
N x N real symmetric matrix has its eigenvalues in
non-increasingorderas y, = ¥, =...2 ¥, where y, isthe

spectral radius of divisor degree matrix of G .
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From the characteristic polynomial|}/| - DD(G)|, we get
the eigenvalues of DD(G). The divisor degree energy

(DDE) of a graph is defined as E 5 (G) = Z|7i| .
i1

Example 1.1.Consider a graph G

Vi vz

W3
Va

The divisor degree matrix of the graph G is

0101
101 1
e
1110

Now, |}/| - DD(G)| =y* —5y° —4y . Then the
eigenvalues of DD (G) are 2.562, - 1.562, -1 and 0
respectively.

Thus, E,p (G) =5.124.

The following definition in [1] is one of the special graph that
is needed for the later part of this paper.

For a connected graph G , Q(G) is defined as subdivision of

edges of G and joining the edges of new vertices on adjacent
edges of G .

Il. SOME UPPER BOUNDS FOR THE DIVISOR
DEGREE ENERGY OF TOTAL GRAPH OF SOME
SPECIAL GRAPHS

In this section, we obtain some upper bounds for the divisor
degree energy of total graph of some basic graphs - path
graph, cycle graph and star graph.

Theorem 2.1. Let T (P, ) be a total graph of path graph of

order 2r —1, where r denotes the number of vertices of
Then

path graph P.,(r>2)
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(i)tr(DD(T (P.)))* = 2(4r +1)

(i) Epp (T(P.)) < A/2(2r —1)(4r +1).
Proof. (i) The divisor degree matrix of T (P, ) is

Theorem 2.3. Let T (K, ;) be a total graph of star graph
of order 2r —1. Then

2 2
r 2(r-1)
(tr(OD(T(Ky p4)) " =(r=1)] [2 r

[0 2 00 000100 0 0 O 2
2010000110000 +2r° =3r
0101000011000
: : : 2 2
oo0oo00--01000©O0O¢.:-110 21 +22(I’71)
0000102000 --011 (i) Epp (T(Kypq)) < |[(r=D@r-1f |2 r .
DD(T(P)):O000~~020100-~001 2
r 1100001010000 +2r -3r
o0110--00O0101¢: 000 .
0011000010000 Proof. (i) The divisor degree matrix of T (K, _,)is
0000100000010 [0 0 o 20D [E] 0
0000110000101 L 2 ] 2
0000011000 - 01 0| 0 0 0 2(r2—1) 0 0
tr(DD(T (P )))? = 4(r —4) + 4(r —3) + 2x5+ 2x 3+ 2x 7 0 . 0 @ . .
= 2(4r +1). : b f
0 0 0 Q 0 0
(i) Using Cauchy-Schwarz inequality, 0 0 1 '2(r2—1)_ 0 { ﬂ
2r-1 L il
Z]/i <\/2(2r_1)(4r+1) {Z(rz—l)} [Z(rz—l)} {Z(rz—l)} 0 {Z(rr—l)} {Z(rr—l)
i1 N . o [2-n]
- A 7Y 1
Therefore, Epp (T (P,)) <+/2(2r —1)(4r +1). ’ r 2]
0 o A=) 1 1
Theorem 2.2. Let T (C, ) be a total graph of cycle graph of : 2l Lor ‘
order 2r, (r > 2). Then 0 6 - 0 _Z(Vr—l)_ 11
(i)tr(DD(T(C,)))* =8r 0 o . H ) 0
(i) Epp (T(C,)) < 4r. . 2o
Proof. (i) The divisor degree matrix of T (C, ) is 2
- - 2
0100001100 001] tr(DDT(Ky 1) =(r—1)[(r—1)2+[ﬂ ]
1010000110 000
0101000011000 ) )
: : : [L} [Z(r—l)}
+(r-1) + +(r—2)
0000010000 110 2 r
0000101000011 ,
|t 000 010000011 3 2r 1)
DD(T(Cy)) = 1100 000010 001 +(r-1) +(r—1)[ - J
0110000101000
0011 000010 000
: : : 2 2
) ) ' r 2(r-1) 2
0000100000 010 :(r—l)Z[—:| +2{ :|+2r -3r
0000 110000 0 2 r
(1000001100 ! (if) Using Cauchy-Schwarz inequality

tr(DD(T(Cy)))? = 4x 2r = 8r.

2r-1 2 2
(i) Using Cauchy-Schwarz inequality, Z7i < [(r-1(2r-1 2[1} + 2[2(r —1)} Lor2 o
2r i=1 2 r
Zl:% <V2rx8r Therefore,
i=
Therefore, Eg (T (C,)) <4r.
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2 2
r 2(r-1)
2= +2
Epp (T(Kyr1)) < [(r=1)(2r -1) |:2:| |: r }

+2r2 -3r

111. SOME UPPER BOUNDS FOR THE DIVISOR
DEGREE ENERGY OF CENTRAL GRAPH OF SOME
BASIC GRAPHS

In this division, we obtain some upper bounds for the divisor
degree energy of central graph of some basic graphs - path
graph, cycle graph and star graph.

Theorem 3.1. Let C(P,) be central graph of path graph of

order 2r-1,(r>2) Then

(i)tr(DD(C(PR,)))* =(r - 1)[r 2+4[r21} J

2

(iNEpp (C(R)) < [(2r —1(r -1) r-2+4[r7_1J .
Proof. (i) The divisor degree matrix of C(P.) is
| B

1 — 0 - 0

2

Rk

0 0 - 1 — | — -~ o0
2 2

0 0

o
1
=
N |
[N
| I
o
o
o
o

1
=
N |
-
L 1
o
o
o
L

2
r-1
=(r—1) r—2+4|:7}

(if) Using Cauchy-Schwarz inequality

2r-1 r—1 2
ig_‘]_ 7i < (2r—1)(r—1) r—2+4|:7}

Therefore,

2
Epp (C(P ) < |(2r - -1) r—2+4[r7_1} .
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Theorem 3.2. Let C(C, ) be central graph of cycle graph of
order 2r (r >3). Then

(i)tr(DD(C(C, )))? —{r 3+4{rzln

(i) Epp (C(Cp) <r (r 3+4[r21} j

Proof. (i) The divisor degree matrix of C(C,)is

0 0

]

15

0

r-1
2

r-1
0 0 1 o
2

tr(DD(C(Cy)))? { —3+ 2[“21} J
1 2
2
2
-1
; J }
(if) Using Cauchy-Schwarz inequality

2r 2 r_1:|2
Yy < |2rT| r—=3+4) —
=i ( [ 2

Therefore,

Epp (C(Cr) < (r 3+4[r21} J

Theorem 3.3. Let C(K,,_,) be central graph of star graph
of order 2r —1(r > 2) . Then

= {r—3+4

(i)tr(DD(C(K,,)))* = (r - 1>{f 2*“{?”
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2
(i) Epp (C(Ky 1) < [2r ~1)(r -) r—2+4[r7_1} J

Proof. (i) The divisor degree matrix of C(K,_,)is

' 217

0 0 0

2
tr(DD(C(K,, )N? = (r _1)[r2—1} +(r-1(r+2)

+ 2(r —l)|:r_1}2
2
2
—(r 1)(r —24 4[—r ;q J

(if) Using Cauchy-Schwarz inequality

2r-1 2r —1)(r -1) r—2+4|:r—_1:|2
2 7 < 2

i=1

Therefore,

2
Epp (C(Kq,_q)) < \j(zr —O)(r —l)[r 24 4[%1} }

1IV. SOME UPPER BOUNDS FOR THE DIVISOR
DEGREE ENERGY OF Q(G) OF SOME BASIC
GRAPHS

In this part, we obtain some upper bounds for the divisor
degree energy of Q(G) of some basic graphs - path graph,

cycle graph and star graph.
Theorem 4.1. Let Q(P.) be a graph of order 2r —1,

(r>2). Then (i)tr(DD(Q(P,)))* =6(3r —2)
(i) Enp (Q(P,)) </6(2r ~1)(3r -2).

Proof. (i) The divisor degree matrix of Q(P.) is
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000 000 0 0 0 0]
000 0001 000
000 0000 2 2 000
000 000000 2 20
000 000000 021
000 000000 00 3
310 000010 000
02 2 000101 000
00 2 000010 000
000 200000 010
000 022000 0
000 - 013000 --01 0]

tr(DD(Q(F’r)))2 =2x9+2x5+2x11+(r—4)x8
+(r-3)x10
=6(3r—2).

(i) Using Cauchy-Schwarz inequality,
2r-1

>y <6(2r-1)(3r-2)
i=1

Therefore, Egp (T(R,)) < \/6(2r -)(@3r-2).
Theorem 4.2. Let Q(C, ) be a graph of order 2r . Then
(i)tr(DD(Q(C,)))* =52r

(il) Epp (Q(C,)) < 2r+/26.

Proof. (i) The divisor degree matrix of Q(C, ) is

[0 0 0020 0 2]
o0 - 002200

0 0 0 00O 2 0
0 0 0 00O 2 2
2 2 0 001 0 1
0 2 0 010 0 0

o0 .---222020 -0
20 .- 0210 -1

tr(DD(Q(C; )% =161 +36xT =52p
(ii) Using Cauchy-Schwarz inequality,

2r
Z}/i <N2rx52r

i=1

Therefore, Epp(Q(C,)) < 2r/26.
Theorem 4.3. Let Q(K ;) be a graph of order 2r -1,
(r>2).Then
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(i)tr(DD(Q(K,,,)))? = r(r -1)(2r +1)
(i) Egp (Q(Ky, 1)) <A/T(r —1)(4r? 1),

Proof. (i) The divisor degree matrix of Q(K, ) is

(000 - 000Tr 00 - 00
000 --0000TTO O - 00
000 --00000T - 00
000 00000O00O r oo
000 000000 0 r
000 000111 11
r oo 001011 11
0r o0 001010 11
00 r 001110 11
00 roi1111 01
000 -~ 0r 111110

tr(DDQ(Ky p_))* = (r =D r% 4 (r=2)x (r2 + 7 -1)

=r(r-1)(2r+1)
(i) Using Cauchy-Schwarz inequality,

Zilyi <\Jr(r=1(4r?-1)

Therefore, Epp (Q(Ky, 1)) </r(r—1)(4r?—1).
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