
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-5S, January 2020

11

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20



Abstract— Edge Detection plays a vital role in machine vision

applications and thereby variety of edge detection algorithms

being developed over time for both grey scale and colour images.

In this paper, a new technique for edge detection called

cumulative mean intensity differential transition algorithm

(CuMIDT Algorithm) is proposed. This approach focuses on

learning variations in the local pixel intensities and predicting the

possible edge when the intensity deviation goes out of the

stipulated window area. Ramps at the edge boundaries and zero

crossing are addressed using differential transition model.

Experimentation are done on standard FDDB dataset and real

dataset. It is observed that the proposed approach gives better

results when compared to the recently proposed novel edge

detection algorithms.

Keywords: Edge Detection, CuMIDT, Differential transition

model.

I. INTRODUCTION

Core of any machine vision algorithm is object detection

in image processing which ultimately hails towards edge

detection. Precisely detected edges plays a key role in the

accurate detection and recognition of objects. Achieving

precise edge detection for a complex structures and patterns

with poor illumination, blur images is a challenging task.

Earlier works on edge detection dates back from 1965

through computation of the first order derivative of the input

image using Robert’s, Prewitt’s and Sobel’s operators [1].

Rotation invariant Laplacian isotropic filter using second

order derivatives was further refined by Marr and Hildereth

as LoG function [1] and further improved by Canny [2].

Subpixel based edge detection method are discussed in

[3][6][7]. Fast Image Edge Detection based on Faber

Schauder Wavelet and Otsu threshold [4] and Neutrosophic

Set structure using maximum norm entropy [5] are found to

be the recent developments. Neural network based models for

edge detection were used in [8][9][11]. A non-iterative

approach that identifies the local maxima of the normalized

absolute values of the RBF interpolant coefficients for

detection is used in [10].

II. PROPOSED METHODOLOGY

In this section, our proposed methodology for edge detection

called cumulative mean intensity differential transition

algorithm (CuMIDT Algorithm) is presented. In this

Revised Manuscript Received on January 31, 2020.

* Correspondence Author

Ganesh Pai*, Department of Computer Science & Engineering,P. A.
College of Engineering, Mangalore, India.Email: ganeshpai24@gmail.com

M SharmilaKumari, Department of Computer Science & Engineering,

P. A. College of Engineering, Mangalore, India. Email:
sharmilabp@gmail.com

approach, the intensity variation within a region is captured

and the regional average intensity is computed. The borders

of these aggregated regions forms the factor for detection of a

possible edge. The entire methodology is developed as a five

step process containing pre-processing, computation of

cumulative mean, differential transition model, binarization

of transition points, local pattern correction and noise

elimination.

A. Pre-processing

Given a grayscale image, it is subjected to three step

process. Smoothing, sharpening (optional step), and

normalization. The image is first smoothened using 2D

Gaussian function. If x and y are the coordinates of the pixel

in an image and σ is the standard deviation of the Gaussian

function, then the 2D Gaussian function G(x,y) is given by

 (1)

With I as the input image and G as the Gaussian function,

Gaussian smoothened image I_g is given by

 (2)

The smoothened image is then optionally sharpened.

While smoothing, certain edge areas with enough intensity to

distinguish as an edge gets blurred outcausing performance

degradation. To overcome this, the image is optionally

sharpened using a 3x3 sharpening filter. This will improve

the pixel intensities at the edges and thus improving the

detection rate. Equation (3) represents the sharpening filter

kernel Fthat can be used. Sharpened image (4)is obtained

by convolving image with the kernel F.

 (3)

 (4)

Filtered image is then normalized and represented as In

 (5)

B. Computation of cumulative mean

Initially, a threshold value of τ(window area W = 2τ) is

defined within which the differential value should range.

Starting from the first pixel of the first row, assuming as

i
th

pixel, a cumulative mean mc of the pixel is computed which

is initially the pixel value.

 (6)

wherei>0 and ys=0 initially for horizontal computation

Next, the difference between the cumulative mean mc of i
th

pixel and the (i+1)
th

 pixel is computed.

Cumulative Mean Intensity Differential

Transition Algorithm for Edge Detection
Ganesh Pai, M Sharmila Kumari

Cumulative Mean Intensity Differential Transition Algorithm for Edge Detection

12

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20

 Ifthe modular difference is less than or equal to threshold τ,

(i+1)
th

 pixel is considered for mean computation and

progressed to the next pixel. If the difference is greater than

the threshold value, all the pixel values considered under

current mean computation up to iis set to the value of mc and

repeat the process with the (i+1)
th

 pixel value. For an m×n

image, this technique is applied for each m rows. The

algorithm is as follows.

Algorithm CumulativeMean(In): [Normalized input image]

Step 1: Set mc ← In(0,0)

Set τ ←W/2 [W is the window size]

Step 2: for each row x:

ys ← yc ← 0 [yc is count of pixels]

for each column y:

if |mc – In(x, y)| ≥ τ:

XIn(x, ysto y) ← mc

ys ← yc ← mc ← 0

mc←sum(In(x, ysto y)) / yc

yc←yc +1

This will capture the pixel intensities that range within a

stipulated window area as one intensity since all those pixels

are representations of the same region or image object at an

abstract level. The selection of cumulative mean value as a

representation of the intensity group is trivial as it can be

replaced by other parameter such as median or mode. These

varying intensity groups creates a block representation of the

image. The intensity change that appears between the blocks

is the feature identified as a possible existence of an edge.

This approach computes pixel intensity variations in

horizontal direction only and hence is able to capture the

vertical and diagonal edges but not horizontal edges. To

capture horizontal edges, the algorithm is reapplied in the

vertical direction by changing horizontal variations to

vertical variations. Computation of cumulative mean for

vertical direction is done through eq. (7):

 (7)

wherei>0 and xs=0 initially for vertical computation

Let XIn and YIn be the cumulative intensities computed in

the horizontal and vertical directions respectively.

C. Differential transition model (DTM)

In the computation of the cumulative mean, the pixel

intensities close to each other within the window will share a

common value. As we approach near an edge, there will be a

shift in the intensity level.Thus subsequent pixel intensities

may not be falling within the window. This will create an

intensity ramp in these regions. The DTM is basically

intended to identify such intensity ramps and converts them

into an intensity step. The regions with constant intensities

are left untouched. In the region of intensity ramp, possible

existence of certain constant intensities in between or at the

corners are too addressed here.

The DTM is developed using a state transition diagram.

The diagram is incorporated with seven states with two final

states in two distinct situations. Fig. 1 and Table 1 shows the

state transition diagram and its table respectively. Difference

dis computed between the i
th

 and (i-1)
th

 pixel i.e. d = XIn(x, yi)

- XIn(x, yi+1). The outcome of the difference are zero, positive

or negative. The difference will be zero for constant

intensities, positive for transition from lower intensity to a

higher intensity, and negative for transitions from higher

intensity to lower intensity. These values are the input to our

state machine. State model also addressed situations with

sudden transition from positive to negative i.e. zero

crossings.

As there are two cumulative mean images XIn and YIn

received as input to this stage, the DTM is applied to both the

images separately. The model is applied to each row of XIn

and each column of YIn. The outcome is an image with all

ramp regions converted to step and represented as

transformed images XIt and YIt respectively.

The differential state transition diagram of Fig. 1

presents various transitions that occurs while traversing over

image pixels. Each transition is labeled with two information.

The first entry is the input the state receives and the second is

the entry labeled A which represents the core action

performed when the corresponding input is received. The

state model uses two variables namely cnt, representing each

of the transition that occur, 0 to +ve, 0 to -ve, +ve to +ve , –ve

to –ve, +ve to –ve and –ve to +ve and the second variable

keeps track of count of pixels with constant intensities along

the ramp. This is represented by ztc called zero transition

count. This value is monitored by a constant value named

mztc called maximum zero transition count. If the ztc exceeds

mztc, it is considered as a stepping state and necessary

intensity adjustment is done. State 2 and state 4 are basically

representing these stepping states or accepting state of the

state diagram. In the stepping state, the intensity ramp can be

converted to a step, using different methods. The method

chosen in this work is the average of the pixels intensities at

both ends. All the pixels less than or equal to the average

value are set with a pixel value at left most end of the

intensity ramp and all the pixels greater than the average

value are set with a pixel value at right most end of the

intensity ramp. Alternately, median or mean of the pixel

intensities can also be considered. The effect of each varies

based on the local intensity value in the image. This is

followed by resetting all the counters. When a +ve input is

received in state 1 and 5, it makes a transition to state 2,

converts the ramp to step for all pixels encountered till that

point, resets the counters and switches to state 3. This is

represented by dashed transition line in Fig. 1. Similar action

is taken when a +ve input is received at states 3 and 6. States

2 and 4 are not going to receive any inputs, rather they are

intended to do a stipulated task and make a blank transitions

accordingly based on the previous transitions. Table 1 shows

this transition as no input transition.

TABLE1. State Transition Table

State\

Input
0 +ve -ve

No

input

State\

Input
0 +ve -ve

No

input

0 0 3 1 - 4 - - - 0/1

1 5 2 1 - 5 5 2 1 -

2 - - - 0/3 6 6 3 4 -

3 6 3 4 -

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-5S, January 2020

13

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20

Fig. 1 Differential state transition diagram

D. Binarizing Transition Points

The transformed image XItand YItare now ready to be unified

and binarized. In this step, transition points in XItand YItare

searched and represent as a binary image with values 0 or 255.

The pixel positions where there are no transitions found are

represented as 0 and pixel positions where we find a step are

represented by 255. The outcome here is a binary image Ib

with transitions from both XItand YIt. If β is the function that

takes XItand YItand returnsa black and white image Ib, then,

 (8)

Ib now contains information about horizontal, vertical and

diagonal edge pixels.

E. Local pattern correction and noise elimination

In an ideal case, Ib will contain all the pixels exactly

representing all the edges of the original image. But in real,

we may not get an exact edge due to the local intensity

variations and poor illuminations of the image. Certain edge

points may not be captured that are visible at an abstract level

but loose the importance at the pixel level due to its

surrounding pixel intensities.

As binarized image Ib contains information from two

distinctly computed pixel transitions, while integrating, there

may be certain edge points detected at nearby distinct

positions given by XItand YIt rather than at same position,

due to the local intensities calculated in different directions,

thereby edges getting misaligned. On the other hand, there

are situations at some edge locations, the pixel transition may

not be detected, again due to local intensities values. Such

edge pixel gets shifted to a distant location away from the

edge. These are considered as noisy points that need to be

eliminated.

Local pattern correction is basically realigning the

misaligned edge points. The correction is done using a 3x3

pattern matrix. The main task done here is the prediction of

the possible missing transition pixel and adding such pixel

and prediction of possible unimportant/less important edge

pixel that may not contribute much to the edge formation and

thereby suppressing such pixels. It may not be exactly

possible to do the corrections to all the misaligned pixels but

a best effort is done to possibly correct with a 3x3 pattern.

To implement Local pattern correction, 106 pattern of size

3x3 each represented as a vector are developed which are the

representation of the possible patterns that needs correction

and a corresponding correction vector is developed to each of

these. These patterns capture corrections to be done in all 8

directions (0 - 360⁰ in steps of 45⁰). Ten such correction

patterns are as shown in Table 2. The matrix representation of

the pattern vector is matched with each 3x3 matrix of the

image to find a match, and applied with the correction matrix

derived from the corresponding correction vector for each

match found. All 106 patterns are checked for its existence

and necessary corrections are applied. The 3x3 image matrix

is read in the row order form from the image and represented

as a patterns vector and mapped to its corresponding

correction vector. The pixel value 255 is represented as 1 in

the patterns. If ψ is the local pattern correction function then

 (9)

Applying the local pattern correction will correct the edges

up to some extent. Apart from the corrections, there is also a

need to eliminate the noisy pixels emerged in the image.

These noisy pixel are eliminated using a mask of varying

size. The intension here is to identify and eliminate isolated

pixels that are not part of the edges. There may be certain

closely located noisy pixels. These are eliminated using

larger mask size. The mask ensures that the noisy pixels are

not connected to the main edge in any directions. M is one

such mask of size 5x5. B is a XOR of the 5x5 pixel values of

the image and the mask M.

 (10)

If any value of B is true, then there is a connection from any

pixel of the inner 3x3 matrix with the outer pixel which may

be a possible edge. In such case, move forward to the next

pixel. If none of the values of B is true then, reset the inner

3x3 matrix of the image to 0. This can be done for

varying size mask. The result of this is the isolated noisy

pixels gets eliminated up to some extent, if not all. Some

noisy pixel group will be of varying size and pattern.

Different approach need to be developed to complete

elimination of such noisy pixel groups. The resultant noise

eliminated image, , formed after applying the mask M to

 is the final edge image that can be projected. If is the

noise elimination function, then

 (11)

III. IMPLEMENTATION DETAILS

The CuMIDT algorithm is applied on a FDDB and real

dataset of varying size grayscale images and implemented

using Python and OpenCV library.

In the pre-processing stage, smoothing is done using

Gaussian blur function with kernel of size 3x3 and standard

deviation 0. This is followed by a normalization process.

Cumulative mean is computed from the first pixel of the

image with τ = 0.1, as it is observed as a favorable value for

the chosen dataset. For poor illuminated images, τ need to be

reduced and can be increased for images with good

illumination. By setting τ = 0.1, window w = 0.2 thereby

providing a span of 10% on either side of the zero mean. Here

pixel intensity is allowed to vary by 25 levels on either side or

an overall of 51 levels. Pixels varying by 51 levels are

aggregated by its mean value. This process is applied in both

horizontal and vertical directions to get two distinct

cumulative images XIn and YIn.

DTM is applied on XIn and YIn separately to eliminate

ramps in the image by converting them to step. The

maximum zero transition count, mztc, is chosen to be 3 in our

experimentation. mztc can be varied based on size of the

image. In case of image with

large dimension, 3 to 5 is an

acceptable range.

Cumulative Mean Intensity Differential Transition Algorithm for Edge Detection

14

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20

 With mztc set to 0 causes zero transition count not to be

considered which is favorable in lower resolution images but

will produce poor results in higher resolution images. Hence

mztc need to be adjusted accordingly. This is followed by

generating a binary the image at the transition points.

Locations where block transitions occur are marked as white

pixel. This is followed by local pattern correction and noise

elimination. Here 106 patterns are used for applying the

corrections. Noise eliminations can also make use of varying

sized masks. 5x5 size masks is used as shown in previous

section. The results are as shown in the next section.

IV. EXPERIMENTAL RESULTS AND

COMPARITIVE ANALYSIS

With the grayscale input image in Fig. 2, Fig. 3 to Fig. 10

shows output of various stages. Fig. 3 shows the result of

pre-processing without sharpening the image. In Fig. 4 and 5,

one can observe the blocks of grey colours appearing in both

horizontal and vertical directions respectively, due to the

application of the cumulative average to all pixels falling in

the window area. Pixels intensities within the window of 51

pixels (τ=0.1, w=0.2) are set with a representative value

based of the actual local intensities. Fig. 6 and 7 are after

applying DTM and converting all ramp regions to step. At a

high level, we may not be able to clearly view this effect.

Hence this effect is shown at pixel level in Fig. 11 to 14.

In Fig. 11 and 12, it is observed, the changes that occur at

the edge transition points. If this is not done, then multiple

edges detected at the edge areas, which results in false

detection. Hence this step overcomes these false detections

and considers them as one edge. Fig. 13 and 14 shows the

effect of major role played by ztc by shrinking thick edge

areas to thin edges in XIn and XIt respectively. In the bottom

region of Fig. 13, we can find multiple pixels with same

intensity within the edge ramp. These pixels with constant

intensities along the ramp are considered as zero transition

count (ztc) and are eliminated that are within maximum ztc

(mztc). Fig. 14 shows all such occurrences are eliminated.

Fig. 8 shows the result of unification of XIt and

YItastransition points and Fig. 9 after pattern correction and

noise elimination. It can observed that complete noise

elimination could not be done as mentioned earlier. Alternate

noise elimination techniques can be further applied to fine

tune noise elimination. Fig. 10 finally is the detected edges

superimposed over the original image. Observe that almost

all of the edges are detected. In addition, certain lines can be

seen in places where in fact no sharp edge exists. This is due

to the deviation of the pixel intensities from the cumulative

mean at the local region. This will result in development of

transition points that are later interpreted as edges. The

possible solutions to overcome such situation is to carefully

calibrate the τ value so that true edges does-not go undetected

and false edges are not detected. Alternately, the work can be

further extended by developing weighted transition points

and points with more weights can be retained at the end as

sharp edges.

Fig. 15 to 23 shows results of three more sample images with

Fig. 15, 18 and 21 being the original images, Fig. 16, 19 and

22, their edge detected binary image and Fig. 17, 20 and 23

being the superimposed edges respectively. All the results

here are achieved with threshold τ = 0.10 and no sharpening

done while pre-processing. By slightly adjusting the value of

τ, we can have certain level of fine tuning done. But

increasing it or decreasing threshold value in large scale

results in weakly detected edges.

Performance of the algorithm is proportional to the

dimension of the image. As the implementation done here are

in stages, there is a considerable delay seen due to multiple

iterations of the image. Computation time will be

substantially reduced with pipelined and parallel

implementations. Conversely, implementing using C or C++,

can gain a considerable performance boost. Table 3 shows

the computation time for the various images at each stage

when executed on Intel Core i3-3220 3.30GHz processor,

4GB RAM and 64-bit Linux OS.

The time shown in the Table 3 are average time of

multiple iterations. Column 4 shows the time taken for

computing the cumulative mean, column 5 for transforming

the edge ramps to steps, column 6 for binarizing the transition

points, column 7 for local pattern correction, column 8 for

removal of noise and column 9, the total time consumed. As

image resolutions varies, time consumed too varies. To

incorporate relative time consumed, column 10 common

metric where all timings are normalized to time per lakh

pixels. A better approximation of the time taken for each

image is observed. Average time taken per lakh pixels is

1.032s with a standard deviation of 0.204.

Another major observation is that noise elimination is the

one which consumes the maximum time among all.

Performance boost can be expected if we somehow reduce

noise elimination time.

By excluding the noise elimination time, we get average time

taken as 0.697s and standard deviation of 0.097 which is a

considerable improvement over the previous results.

Fig. 26 to 32 shows various effects of sharpening the

image and calibration of τ to control the detected edges. Fig.

25 shows the preprocessed image of the original image in Fig.

24 with sharpening applied. In Fig. 25, intensities of certain

pixels at the edge areas has increased due to sharpening and

thereby increasing the width of the edge. This can be seen in

Fig. 33 before sharpening and Fig. 34 after sharpening. In

Fig. 34, observe formation of thick black edge. Due to the

formation of these thick lines in multiple regions in the

image, we get a scattered edges or multiple edges being

detected along the edge areas, as shown in Fig. 26 when τ =

0.10. A moderate correction to this can be applied by

calibrating the τ value. Fig. 27, 28 and 29 shows results with τ

= 0.20, τ = 0.25 and τ = 0.30 respectively and Fig. 30, 31 and

32 shows the result when τ = 0.20, τ = 0.25 and τ = 0.30

respectively. Certain edges may get missed as observed in

Fig. 29 when τ = 0.30.The upper edge of the cap is barely

detected but clearly detected when τ = 0.25 in Fig. 28. In case

of his ears, excess lines are seen when τ = 0.10 but that is

rectified at τ = 0.25 and starts diminishing as τ moves above

0.25 and some lines of the ears are disappeared at τ = 0.30.

The proposed algorithm is compared with sobel’s operator

with kernel size of 3x3, scale of 1 and delta value equal to 0

and canny edge detection algorithm with sigma value 50,

kernel size 3x3, weak pixel value 1, strong pixel value 255,

lower threshold of 0.05 and higher threshold of 0.15.The

edges detected using these techniques and proposed

technique are shown in Fig. 36 to 38 for the original image in

Fig. 35 and Fig. 40 to 42 for the original image in Fig. 39

respectively.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-5S, January 2020

15

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20

The proposed CuMIDT algorithm is applied with threshold

value, τ of 0.20 with sharpening Fig. 35 and τ of 0.13 with no

sharpening for Fig. 39.

Fig. 2 Original image

-1

Fig. 3 Preprocessed

image

Fig. 4 Cumulative mean

image XIn

Fig. 5 Cumulative mean

image YIn

Fig. 6 Transformed

image XIt

Fig. 7 Transformed

image YIt

Fig. 8 Binarized image Ib

Fig. 9 Pattern corrected

and noise eliminated edge

image IE

Fig. 10 Detected

edges superimposed

on original image

Fig. 11 Edge Ramps

at pixel level

Fig. 12 Edge

Ramps converted

to step

Fig. 13 Edge

Ramps with ztc

at pixel level

Fig. 14 Edge ramps

with ztc converted

to step

Fig. 15 Original image -2

Fig. 16 Binary Edge

image IE

Fig. 17 Detected edges

superimposed on original

image

Fig. 18 Original image -3

Fig. 19 Binary Edge

image IE

Fig. 20 Detected edges

superimposed on

original image

Fig. 21 Original

image -4

Fig. 22 Binary

Edge image IE

Fig. 23 Detected

edges

superimposed on

original image

Cumulative Mean Intensity Differential Transition Algorithm for Edge Detection

16

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20

TABLE 2 Time taken at various stages and in total

1 2 3 4 5 6 7 8 9 10

Fig.ure Dimension
No. of

Pixels

XIn&YIn

(in s)

XIt&YIt

(in s)

Ib

(in s)

Ipc

(in s)

IN

(in s)

Total

Time

(in s)

Time per

lakh pixels

(in s)

Fig. 2 450x348 156600 0.322 0.318 0.156 0.355 0.586 1.737 1.109

Fig. 15 859x820 704380 1.182 1.22 0.715 0.962 1.386 5.465 0.776

Fig. 18 512x590 302080 0.515 0.556 0.309 0.636 0.964 2.98 0.986

Fig. 21 450x347 156150 0.336 0.331 0.162 0.429 0.705 1.963 1.257

Average time per lakh pixels: 1.032 s, Standard Deviation: 0.204

Fig. 24. Original

image -1

Fig. 25.

Preprocessed

image with

sharpening applied

Fig. 26. Processed

with τ = 0.10

Fig. 27. Processed

with τ = 0.20

Fig. 28. Processed

with τ = 0.25

Fig. 29.

Processed with

τ = 0.30

Fig. 30. Edge

image when τ =

0.20

Fig. 31. Edge

image when τ =

0.25

Fig. 32. Edge

image when τ =

0.30

Fig. 33. Before

sharpening

Fig. 34. After

sharpening

Fig. 35 Original image -1

Fig. 36 Using Sobel

operator

Fig. 37 Using Canny

algorithm

Fig. 38 Using CuMIDT

algorithm

Fig. 39 Original image -3

Fig. 40 Using Sobel

operator

Fig. 41 Using Canny

algorithm

Fig. 42 Using CuMIDT

algorithm

V. CONCLUSION

CuMIDT algorithm gives better detection results to FDDB

dataset and real dataset, when compared with standard

sobel’s operator and canny edge detection algorithm. As

observed in certain results, some lines may not be

representing sharp edge. These are the result of deviation of

the pixel intensities from the cumulative mean at the local

region. By developing weighted transition points and

retaining points with more weights, we can have only strong

edges being detected. By applying Gaussian function to

smooth out the transition curve, more clear approximation of

the line representing the edges can be achieved.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-5S, January 2020

17

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E10030285S20/2020©BEIESP

DOI: 10.35940/ijrte.E1003.0285S20

REFERENCES

1. R. C. Gonzalez, R. E. Woods, Digital Image Processing, 3rd edition,
Pearson Education.

2. J Canny, “A computational approach to edge detection.” IEEE Trans.

PAMI (1986), 8, n ~ 6, pp. 679-698.
3. Qiucheng Sun, YueqianHou, Qingchang Tan, A subpixel edge

detection method based on an arctangent edge model, Optik 127 (2016)

5702–5710
4. AssmaAzeroual, Karim Afdel, Fast Image Edge Detection based on

Faber Schauder Wavelet and Otsu Threshold, Heliyon 3 (2017),

https://doi.org/10.1016/j.heliyon.2017.e00485
5. EserSert, DeryaAvci, A new edge detection approach via neutrosophy

based on maximum norm entropy, Expert Systems With Applications

115 (2019) 499–511
6. Shaohu Peng et al., Subpixel Edge Detection Based on Edge Gradient

Directional Interpolation and Zernike Moment, 2018 International

Conference on Computer Science and Software Engineering, 2018
7. Le Wang, Li Zou, Shengmei Zhao, Edge detection based on

subpixel-speckle-shifting ghost imaging, Optics Communications 407

(2018) 181–185
8. Changbao Wen et al., Edge detection with feature re-extraction deep

convolutional neural network, J. Vis. Commun. Image R. 57 (2018)

84–90
9. Xiaowei Hu, Yun Liu, Kai Wang, Bo Ren, Learning Hybrid

Convolutional Features for Edge Detection, Accepted Manuscript in

Neurocomputing, 2018
10. Lucia Romani, Milvia Rossini, Daniela Schenone, Edge detection

methods based on RBF interpolation, Accepted Manuscript in Journal

of Computational and Applied Mathematics, 2018
11. Luyang Wang, Yuan Shen, Houde Liu, ZhenhuaGuo, An accurate and

efficient multi-category edge detection method, Cognitive Systems

Research 58 (2019) 160–172

AUTHORS PROFILE

Ganesh Pai, completed his Bachelor’s degree in the year
2006 and Master’s degree in 2009 from NMAMIT, Nitte,

Karkala. He has guided several UG and PG projects and

published several papers in National and International
Conferences/Journals. His area of interest includes

Application Programming, Web Technologies and Image

Processing.Currently he is pursuing his Research work in Digital Image
Processing.

M SharmilaKumari, obtained her Ph.D. in the field of
Image Processing from Mangalore University,

Mangalore, Karnataka, India in the year 2012. Currently

she is heading the Computer Science and Engineering
department at P A College of Engineering, Mangalore,

Karnataka, India. Her areas of specialization include Pattern Recognition,

Image Processing, Embedded Systems and Microprocessors. She has
published around 80 research articles in International and National Journals

and Conferences.She has successfully completed three collaborative

research projects with Moscow State University, Moscow, Russia awarded
under DST-RFBR sponsorship and also completed the bilateral workshop on

Emerging Applications of Computer Vision-2011 with Moscow State

University, awarded under DST-RFBR sponsorship.

