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 

Abstract— Edge Detection plays a vital role in machine vision 

applications and thereby variety of edge detection algorithms 

being developed over time for both grey scale and colour images. 

In this paper, a new technique for edge detection called 

cumulative mean intensity differential transition algorithm 

(CuMIDT Algorithm) is proposed. This approach focuses on 

learning variations in the local pixel intensities and predicting the 

possible edge when the intensity deviation goes out of the 

stipulated window area. Ramps at the edge boundaries and zero 

crossing are addressed using differential transition model. 

Experimentation are done on standard FDDB dataset and real 

dataset. It is observed that the proposed approach gives better 

results when compared to the recently proposed novel edge 

detection algorithms. 

Keywords: Edge Detection, CuMIDT, Differential transition 

model.  

I. INTRODUCTION 

Core of any machine vision algorithm is object detection 

in image processing which ultimately hails towards edge 

detection. Precisely detected edges plays a key role in the 

accurate detection and recognition of objects. Achieving 

precise edge detection for a complex structures and patterns 

with poor illumination, blur images is a challenging task. 

Earlier works on edge detection dates back from 1965 

through computation of the first order derivative of the input 

image using Robert’s, Prewitt’s and Sobel’s operators [1]. 

Rotation invariant Laplacian isotropic filter using second 

order derivatives was further refined by Marr and Hildereth 

as LoG function [1] and further improved by Canny [2]. 

Subpixel based edge detection method are discussed in 

[3][6][7]. Fast Image Edge Detection based on Faber 

Schauder Wavelet and Otsu threshold [4] and Neutrosophic 

Set structure using maximum norm entropy [5] are found to 

be the recent developments. Neural network based models for 

edge detection were used in [8][9][11]. A non-iterative 

approach that identifies the local maxima of the normalized 

absolute values of the RBF interpolant coefficients for 

detection is used in [10]. 

II. PROPOSED METHODOLOGY 

In this section, our proposed methodology for edge detection 

called cumulative mean intensity differential transition 

algorithm (CuMIDT Algorithm) is presented. In this 
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approach, the intensity variation within a region is captured 

and the regional average intensity is computed. The borders 

of these aggregated regions forms the factor for detection of a 

possible edge. The entire methodology is developed as a five 

step process containing pre-processing, computation of 

cumulative mean, differential transition model, binarization 

of transition points, local pattern correction and noise 

elimination. 

A. Pre-processing 

Given a grayscale image, it is subjected to three step 

process. Smoothing, sharpening (optional step), and 

normalization. The image is first smoothened using 2D 

Gaussian function. If x and y are the coordinates of the pixel 

in an image and σ is the standard deviation of the Gaussian 

function, then the 2D Gaussian function G(x,y) is given by 

         
 

    
 
 
     

                (1) 

With I as the input image and G as the Gaussian function, 

Gaussian smoothened image I_g is given by 

                                                (2) 

The smoothened image   is then optionally sharpened. 

While smoothing, certain edge areas with enough intensity to 

distinguish as an edge gets blurred outcausing performance 

degradation. To overcome this, the image is optionally 

sharpened using a 3x3 sharpening filter. This will improve 

the pixel intensities at the edges and thus improving the 

detection rate. Equation (3) represents the sharpening filter 

kernel Fthat can be used. Sharpened image   (4)is obtained 

by convolving image  with the kernel F. 

    
      
     
      

  (3) 

       (4) 

Filtered image is then normalized and represented as In 

    

  

   
                           

  

   
                               

     (5) 

B. Computation of cumulative mean 

Initially, a threshold value of τ(window area W = 2τ) is 

defined within which the differential value should range. 

Starting from the first pixel of the first row, assuming as 

i
th

pixel, a cumulative mean mc of the pixel is computed which 

is initially the pixel value. 

    
 

    
          
    (6) 

wherei>0 and ys=0 initially  for horizontal computation 

Next, the difference between the cumulative mean mc of i
th

 

pixel and the (i+1)
th

 pixel is computed. 
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 Ifthe modular difference is less than or equal to threshold τ, 

(i+1)
th

 pixel is considered for mean computation and 

progressed to the next pixel. If the difference is greater than 

the threshold value, all the pixel values considered under 

current mean computation up to iis set to the value of mc and 

repeat the process with the (i+1)
th

 pixel value. For an m×n 

image, this technique is applied for each m rows. The 

algorithm is as follows. 

Algorithm CumulativeMean(In):     [Normalized input image] 

Step 1: Set mc ← In(0,0) 

Set τ ←W/2                       [W is the window size] 

Step 2: for each row x: 

ys ← yc ← 0                   [yc is count of pixels] 

for each column y: 

if |mc – In(x, y)| ≥  τ: 

XIn(x, ysto y) ← mc 

ys ← yc ← mc ← 0 

mc←sum(In(x, ysto y)) / yc 

yc←yc +1 

This will capture the pixel intensities that range within a 

stipulated window area as one intensity since all those pixels 

are representations of the same region or image object at an 

abstract level. The selection of cumulative mean value as a 

representation of the intensity group is trivial as it can be 

replaced by other parameter such as median or mode. These 

varying intensity groups creates a block representation of the 

image. The intensity change that appears between the blocks 

is the feature identified as a possible existence of an edge.  

This approach computes pixel intensity variations in 

horizontal direction only and hence is able to capture the 

vertical and diagonal edges but not horizontal edges. To 

capture horizontal edges, the algorithm is reapplied in the 

vertical direction by changing horizontal variations to 

vertical variations. Computation of cumulative mean for 

vertical direction is done through eq. (7): 

    
 

    
          
    (7) 

wherei>0 and xs=0 initially  for vertical computation 

Let XIn and YIn be the cumulative intensities computed in 

the horizontal and vertical directions respectively. 

C. Differential transition model (DTM) 

In the computation of the cumulative mean, the pixel 

intensities close to each other within the window will share a 

common value. As we approach near an edge, there will be a 

shift in the intensity level.Thus subsequent pixel intensities 

may not be falling within the window. This will create an 

intensity ramp in these regions. The DTM is basically 

intended to identify such intensity ramps and converts them 

into an intensity step. The regions with constant intensities 

are left untouched. In the region of intensity ramp, possible 

existence of certain constant intensities in between or at the 

corners are too addressed here. 

The DTM is developed using a state transition diagram. 

The diagram is incorporated with seven states with two final 

states in two distinct situations. Fig. 1 and Table 1 shows the 

state transition diagram and its table respectively. Difference 

dis computed between the i
th

 and (i-1)
th

 pixel i.e. d = XIn(x, yi) 

- XIn(x, yi+1). The outcome of the difference are zero, positive 

or negative. The difference will be zero for constant 

intensities, positive for transition from lower intensity to a 

higher intensity, and negative for transitions from higher 

intensity to lower intensity. These values are the input to our 

state machine. State model also addressed situations with 

sudden transition from positive to negative i.e. zero 

crossings.  

As there are two cumulative mean images XIn and YIn 

received as input to this stage, the DTM is applied to both the 

images separately. The model is applied to each row of XIn 

and each column of YIn. The outcome is an image with all 

ramp regions converted to step and represented as 

transformed images XIt and YIt respectively. 

The differential state transition diagram of Fig. 1 

presents various transitions that occurs while traversing over 

image pixels. Each transition is labeled with two information. 

The first entry is the input the state receives and the second is 

the entry labeled A which represents the core action 

performed when the corresponding input is received. The 

state model uses two variables namely cnt, representing each 

of the transition that occur, 0 to +ve, 0 to -ve, +ve to +ve , –ve 

to –ve, +ve to –ve and –ve to +ve and the second variable 

keeps track of count of pixels with constant intensities along 

the ramp. This is represented by ztc called zero transition 

count. This value is monitored by a constant value named 

mztc called maximum zero transition count. If the ztc exceeds 

mztc, it is considered as a stepping state and necessary 

intensity adjustment is done. State 2 and state 4 are basically 

representing these stepping states or accepting state of the 

state diagram. In the stepping state, the intensity ramp can be 

converted to a step, using different methods. The method 

chosen in this work is the average of the pixels intensities at 

both ends. All the pixels less than or equal to the average 

value are set with a pixel value at left most end of the 

intensity ramp and all the pixels greater than the average 

value are set with a pixel value at right most end of the 

intensity ramp. Alternately, median or mean of the pixel 

intensities can also be considered. The effect of each varies 

based on the local intensity value in the image. This is 

followed by resetting all the counters. When a +ve input is 

received in state 1 and 5, it makes a transition to state 2, 

converts the ramp to step for all pixels encountered till that 

point, resets the counters and switches to state 3. This is 

represented by dashed transition line in Fig. 1. Similar action 

is taken when a +ve input is received at states 3 and 6. States 

2 and 4 are not going to receive any inputs, rather they are 

intended to do a stipulated task and make a blank transitions 

accordingly based on the previous transitions. Table 1 shows 

this transition as no input transition. 

 

TABLE1. State Transition Table 

State\ 

Input 
0 +ve -ve 

No  

input 

State\ 

Input 
0 +ve -ve 

No  

input 

0 0 3 1 - 4 - - - 0/1 

1 5 2 1 - 5 5 2 1 - 

2 - - - 0/3 6 6 3 4 - 

3 6 3 4 -  
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Fig. 1 Differential state transition diagram 

D. Binarizing Transition Points 

The transformed image XItand YItare now ready to be unified 

and binarized. In this step, transition points in XItand YItare 

searched and represent as a binary image with values 0 or 255. 

The pixel positions where there are no transitions found are 

represented as 0 and pixel positions where we find a step are 

represented by 255. The outcome here is a binary image Ib 

with transitions from both XItand YIt. If β is the function that 

takes XItand YItand returnsa black and white image Ib, then,  

             (8) 

Ib now contains information about horizontal, vertical and 

diagonal edge pixels. 

E. Local pattern correction and noise elimination 

In an ideal case, Ib will contain all the pixels exactly 

representing all the edges of the original image. But in real, 

we may not get an exact edge due to the local intensity 

variations and poor illuminations of the image. Certain edge 

points may not be captured that are visible at an abstract level 

but loose the importance at the pixel level due to its 

surrounding pixel intensities. 

As binarized image Ib contains information from two 

distinctly computed pixel transitions, while integrating, there 

may be certain edge points detected at nearby distinct 

positions given by XItand YIt rather than at same position, 

due to the local intensities calculated in different directions, 

thereby edges getting misaligned. On the other hand, there 

are situations at some edge locations, the pixel transition may 

not be detected, again due to local intensities values. Such 

edge pixel gets shifted to a distant location away from the 

edge. These are considered as noisy points that need to be 

eliminated.  

Local pattern correction is basically realigning the 

misaligned edge points. The correction is done using a 3x3 

pattern matrix. The main task done here is the prediction of 

the possible missing transition pixel and adding such pixel 

and prediction of possible unimportant/less important edge 

pixel that may not contribute much to the edge formation and 

thereby suppressing such pixels. It may not be exactly 

possible to do the corrections to all the misaligned pixels but 

a best effort is done to possibly correct with a 3x3 pattern.  

To implement Local pattern correction, 106 pattern of size 

3x3 each represented as a vector are developed which are the 

representation of the possible patterns that needs correction 

and a corresponding correction vector is developed to each of 

these. These patterns capture corrections to be done in all 8 

directions (0 - 360⁰ in steps of 45⁰). Ten such correction 

patterns are as shown in Table 2. The matrix representation of 

the pattern vector is matched with each 3x3 matrix of the 

image to find a match, and applied with the correction matrix 

derived from the corresponding correction vector for each 

match found. All 106 patterns are checked for its existence 

and necessary corrections are applied. The 3x3 image matrix 

is read in the row order form from the image and represented 

as a patterns vector and mapped to its corresponding 

correction vector. The pixel value 255 is represented as 1 in 

the patterns. If ψ is the local pattern correction function then 

          (9) 

Applying the local pattern correction will correct the edges 

up to some extent. Apart from the corrections, there is also a 

need to eliminate the noisy pixels emerged in the image. 

These noisy pixel are eliminated using a mask of varying 

size. The intension here is to identify and eliminate isolated 

pixels that are not part of the edges. There may be certain 

closely located noisy pixels. These are eliminated using 

larger mask size. The mask ensures that the noisy pixels are 

not connected to the main edge in any directions. M is one 

such mask of size 5x5. B is a XOR of the 5x5 pixel values of 

the image and the mask M.  

   

 
 
 
 
 
     
 
 
 

   
   
   

 
 
 

      
 
 
 
 

               (10) 

If any value of B is true, then there is a connection from any 

pixel of the inner 3x3 matrix with the outer pixel which may 

be a possible edge. In such case, move forward to the next 

pixel. If none of the values of B is true then, reset the inner 

3x3 matrix of the image     to 0. This can be done for 

varying size mask. The result of this is the isolated noisy 

pixels gets eliminated up to some extent, if not all. Some 

noisy pixel group will be of varying size and pattern. 

Different approach need to be developed to complete 

elimination of such noisy pixel groups. The resultant noise 

eliminated image,   , formed after applying the mask M to 

    is the final edge image that can be projected. If   is the 

noise elimination function, then 

         (11) 

III. IMPLEMENTATION DETAILS 

The CuMIDT algorithm is applied on a FDDB and real 

dataset of varying size grayscale images and implemented 

using Python and OpenCV library. 

In the pre-processing stage, smoothing is done using 

Gaussian blur function with kernel of size 3x3 and standard 

deviation 0. This is followed by a normalization process. 

Cumulative mean is computed from the first pixel of the 

image with τ = 0.1, as it is observed as a favorable value for 

the chosen dataset. For poor illuminated images, τ need to be 

reduced and can be increased for images with good 

illumination. By setting τ = 0.1, window w = 0.2 thereby 

providing a span of 10% on either side of the zero mean. Here 

pixel intensity is allowed to vary by 25 levels on either side or 

an overall of 51 levels. Pixels varying by 51 levels are 

aggregated by its mean value. This process is applied in both 

horizontal and vertical directions to get two distinct 

cumulative images XIn and YIn.  

DTM is applied on XIn and YIn separately to eliminate 

ramps in the image by converting them to step. The 

maximum zero transition count, mztc, is chosen to be 3 in our 

experimentation. mztc can be varied based on size of the 

image. In case of image with 

large dimension, 3 to 5 is an 

acceptable range. 
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 With mztc set to 0 causes zero transition count not to be 

considered which is favorable in lower resolution images but 

will produce poor results in higher resolution images. Hence 

mztc need to be adjusted accordingly. This is followed by 

generating a binary the image at the transition points. 

Locations where block transitions occur are marked as white 

pixel. This is followed by local pattern correction and noise 

elimination. Here 106 patterns are used for applying the 

corrections. Noise eliminations can also make use of varying 

sized masks. 5x5 size masks is used as shown in previous 

section. The results are as shown in the next section. 

IV. EXPERIMENTAL RESULTS AND 

COMPARITIVE ANALYSIS 

With the grayscale input image in Fig. 2, Fig. 3 to Fig. 10 

shows output of various stages. Fig. 3 shows the result of 

pre-processing without sharpening the image. In Fig. 4 and 5, 

one can observe the blocks of grey colours appearing in both 

horizontal and vertical directions respectively, due to the 

application of the cumulative average to all pixels falling in 

the window area. Pixels intensities within the window of 51 

pixels (τ=0.1, w=0.2) are set with a representative value 

based of the actual local intensities. Fig. 6 and 7 are after 

applying DTM and converting all ramp regions to step. At a 

high level, we may not be able to clearly view this effect. 

Hence this effect is shown at pixel level in Fig. 11 to 14. 

In Fig. 11 and 12, it is observed, the changes that occur at 

the edge transition points. If this is not done, then multiple 

edges detected at the edge areas, which results in false 

detection. Hence this step overcomes these false detections 

and considers them as one edge. Fig. 13 and 14 shows the 

effect of major role played by ztc by shrinking thick edge 

areas to thin edges in XIn and XIt respectively. In the bottom 

region of Fig. 13, we can find multiple pixels with same 

intensity within the edge ramp. These pixels with constant 

intensities along the ramp are considered as zero transition 

count (ztc) and are eliminated that are within maximum ztc 

(mztc). Fig. 14 shows all such occurrences are eliminated. 

Fig. 8 shows the result of unification of XIt and 

YItastransition points and Fig. 9 after pattern correction and 

noise elimination. It can observed that complete noise 

elimination could not be done as mentioned earlier. Alternate 

noise elimination techniques can be further applied to fine 

tune noise elimination. Fig. 10 finally is the detected edges 

superimposed over the original image. Observe that almost 

all of the edges are detected. In addition, certain lines can be 

seen in places where in fact no sharp edge exists. This is due 

to the deviation of the pixel intensities from the cumulative 

mean at the local region. This will result in development of 

transition points that are later interpreted as edges. The 

possible solutions to overcome such situation is to carefully 

calibrate the τ value so that true edges does-not go undetected 

and false edges are not detected. Alternately, the work can be 

further extended by developing weighted transition points 

and points with more weights can be retained at the end as 

sharp edges. 

Fig. 15 to 23 shows results of three more sample images with 

Fig. 15, 18 and 21 being the original images, Fig. 16, 19 and 

22, their edge detected binary image and Fig. 17, 20 and 23 

being the superimposed edges respectively. All the results 

here are achieved with threshold τ = 0.10 and no sharpening 

done while pre-processing. By slightly adjusting the value of 

τ, we can have certain level of fine tuning done. But 

increasing it or decreasing threshold value in large scale 

results in weakly detected edges. 

Performance of the algorithm is proportional to the 

dimension of the image. As the implementation done here are 

in stages, there is a considerable delay seen due to multiple 

iterations of the image. Computation time will be 

substantially reduced with pipelined and parallel 

implementations. Conversely, implementing using C or C++, 

can gain a considerable performance boost. Table 3 shows 

the computation time for the various images at each stage 

when executed on Intel Core i3-3220 3.30GHz processor, 

4GB RAM and 64-bit Linux OS. 

The time shown in the Table 3 are average time of 

multiple iterations. Column 4 shows the time taken for 

computing the cumulative mean, column 5 for transforming 

the edge ramps to steps, column 6 for binarizing the transition 

points, column 7 for local pattern correction, column 8 for 

removal of noise and column 9, the total time consumed. As 

image resolutions varies, time consumed too varies. To 

incorporate relative time consumed, column 10 common 

metric where all timings are normalized to time per lakh 

pixels. A better approximation of the time taken for each 

image is observed. Average time taken per lakh pixels is 

1.032s with a standard deviation of 0.204. 

Another major observation is that noise elimination is the 

one which consumes the maximum time among all. 

Performance boost can be expected if we somehow reduce 

noise elimination time. 

By excluding the noise elimination time, we get average time 

taken as 0.697s and standard deviation of 0.097 which is a 

considerable improvement over the previous results. 

Fig. 26 to 32 shows various effects of sharpening the 

image and calibration of τ to control the detected edges. Fig. 

25 shows the preprocessed image of the original image in Fig. 

24 with sharpening applied. In Fig. 25, intensities of certain 

pixels at the edge areas has increased due to sharpening and 

thereby increasing the width of the edge. This can be seen in 

Fig. 33 before sharpening and Fig. 34 after sharpening. In 

Fig. 34, observe formation of thick black edge. Due to the 

formation of these thick lines in multiple regions in the 

image, we get a scattered edges or multiple edges being 

detected along the edge areas, as shown in Fig. 26 when τ = 

0.10. A moderate correction to this can be applied by 

calibrating the τ value. Fig. 27, 28 and 29 shows results with τ 

= 0.20, τ = 0.25 and τ = 0.30 respectively and Fig. 30, 31 and 

32 shows the result when τ = 0.20, τ = 0.25 and τ = 0.30 

respectively. Certain edges may get missed as observed in 

Fig. 29 when τ = 0.30.The upper edge of the cap is barely 

detected but clearly detected when τ = 0.25 in Fig. 28. In case 

of his ears, excess lines are seen when τ = 0.10 but that is 

rectified at τ = 0.25 and starts diminishing as τ moves above 

0.25 and some lines of the ears are disappeared at τ = 0.30. 

The proposed algorithm is compared with sobel’s operator 

with kernel size of 3x3, scale of 1 and delta value equal to 0 

and canny edge detection algorithm with sigma value 50, 

kernel size 3x3, weak pixel value 1, strong pixel value 255, 

lower threshold of 0.05 and higher threshold of 0.15.The 

edges detected using these techniques and proposed 

technique are shown in Fig. 36 to 38 for the original image in 

Fig. 35 and Fig. 40 to 42 for the original image in Fig. 39 

respectively.  
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The proposed CuMIDT algorithm is applied with threshold 

value, τ of 0.20 with sharpening Fig. 35 and τ of 0.13 with no 

sharpening for Fig. 39. 

 

 

 

 
Fig. 2 Original image 

-1 

 
Fig. 3 Preprocessed 

image 

 
Fig. 4 Cumulative mean 

image XIn 

 
Fig. 5 Cumulative mean 

image YIn 

 
Fig. 6 Transformed 

image XIt 

 
Fig. 7 Transformed 

image YIt 

 
Fig. 8 Binarized image Ib 

 
Fig. 9 Pattern corrected 

and noise eliminated edge 

image IE 

 
Fig. 10 Detected 

edges superimposed 

on original image 

 
Fig. 11 Edge Ramps 

at pixel level 

 
Fig. 12 Edge 

Ramps converted 

to step 

 
Fig. 13 Edge 

Ramps with ztc 

at pixel level  

 
Fig. 14 Edge ramps 

with ztc converted 

to step 

  

 
Fig. 15 Original image -2 

 
Fig. 16 Binary Edge 

image IE 

 
Fig. 17 Detected edges 

superimposed on original 

image 

 
Fig. 18 Original image -3 

 
Fig. 19 Binary Edge 

image IE 

 
Fig. 20 Detected edges 

superimposed on 

original image 

 
Fig. 21 Original 

image -4 

 
Fig. 22 Binary 

Edge image IE 

 
Fig. 23 Detected 

edges 

superimposed on 

original image 
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TABLE 2 Time taken at various stages and in total 

1 2 3 4 5 6 7 8 9 10 

Fig.ure Dimension 
No. of 

Pixels 

XIn&YIn 

(in s) 

XIt&YIt 

(in s) 

Ib 

(in s) 

Ipc 

(in s) 

IN 

(in s) 

Total 

Time  

(in s) 

Time per 

lakh pixels 

(in s) 

Fig. 2 450x348 156600 0.322 0.318 0.156 0.355 0.586 1.737 1.109 

Fig. 15 859x820 704380 1.182 1.22 0.715 0.962 1.386 5.465 0.776 

Fig. 18 512x590 302080 0.515 0.556 0.309 0.636 0.964 2.98 0.986 

Fig. 21 450x347 156150 0.336 0.331 0.162 0.429 0.705 1.963 1.257 

Average time per lakh pixels: 1.032 s,   Standard Deviation: 0.204 

 

 

Fig. 24. Original 

image -1 

 

Fig. 25. 

Preprocessed 

image with 

sharpening applied 

 

Fig. 26. Processed 

with τ = 0.10 

 

Fig. 27. Processed 

with τ = 0.20 

 

Fig. 28. Processed 

with τ = 0.25 

 
Fig. 29. 

Processed with 

τ = 0.30 

 
Fig. 30. Edge 

image when τ = 

0.20 

 

Fig. 31. Edge 

image when τ = 

0.25 

 

Fig. 32. Edge 

image when τ = 

0.30 

 
Fig. 33. Before 

sharpening 

 
Fig. 34. After 

sharpening 

 
Fig. 35 Original image -1 

 
Fig. 36 Using Sobel 

operator 

 
Fig. 37 Using Canny 

algorithm 

 
Fig. 38 Using CuMIDT 

algorithm 

 
Fig. 39 Original image -3 

 
Fig. 40 Using Sobel 

operator 

 
Fig. 41 Using Canny 

algorithm 

 
Fig. 42 Using CuMIDT 

algorithm 

 

V. CONCLUSION 

CuMIDT algorithm gives better detection results to FDDB 

dataset and real dataset, when compared with standard 

sobel’s operator and canny edge detection algorithm. As 

observed in certain results, some lines may not be 

representing sharp edge. These are the result of deviation of 

the pixel intensities from the cumulative mean at the local 

region. By developing weighted transition points and 

retaining points with more weights, we can have only strong 

edges being detected. By applying Gaussian function to 

smooth out the transition curve, more clear approximation of 

the line representing the edges can be achieved. 
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