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 

Abstract: Detecting real-world vehicle objects captured from 

car-mounted cameras requires manual labelling of video images.  

Previous vehicle object detection papers such as the winners of the 

2018 AI City Challenge [1] used a training set of over 4,500 hand 

labelled images.  In this paper, we attempt to automate this task by 

applying transfer learning to a YOLOv3 model trained on 

Imagenet and then re-trained on a set of stock car images and a 

small subset of hand labelled images taken from front-mounted 

dashboard camera videos.  The mean Average Precision (mAP) of 

the validation set is used to determine the effectiveness of model 

vehicle classification.  There is a significant variance issue 

between the validation and training set because the video images 

are taken in 1) various weather and lighting conditions and 2) the 

stock images have different image perspectives.  The experimental 

results demonstrate that the YOLOv3 model can reach an overall 

16.07% mAP after 60 epochs of training and can identify classes 

of vehicles that had few training examples in the dataset. 

Keywords : Object detection, image processing, pytorch, YOLOv3, 

R-CNN, Fast R-CNN, Faster R-CNN, deep learning, mAP, IOU. 

I. INTRODUCTION 

Deep learning vehicle detection can be split into two different 

model strategies: 1) a single shot object detector (SSD, 

YOLO, YOLOv2, and YOLOv3) and 2) a region-based 

object detector (R-CNN, Fast R-CNN, and Faster R-CNN).  

Recent papers such as Tang et al [1] and Sang et al [2] 

demonstrate the success that YOLOv2 has had on object 

detection in the 2018 AI City Challenge.  In this paper, a 

PyTorch version of Redmon’s [3] YOLOv3 model is applied 

to vehicle images from the Nexar Challenge 2 dataset, 

NEXET [4].  The models were pre-trained on Imagenet data 

and then trained on a custom dataset consisting of the 

Stanford car data set [5] and the Nexar Challenge 2 vehicle 

dataset, NEXET.  The trained models were then evaluated 

using the mean average precision metric (mAP) on a random 

sample of NEXET vehicle images. 
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Figure 1.  YOLO produces SxS predictions with B 

boundary boxes.  [6] 

II. RELATED WORK 

Region based object detection model, R-CNN[7], were the 

first deep learning object detection models that were 

successfully applied to vehicle detection. Fast R-CNN[8] 

improved on R-CNN by using a feature extractor (CNN) to 

extract features over the whole image thereby speeding up 

the training and inference process. Faster R-CNN[9] 

further improved the training and inference speed and 

proved to be usable for real-time vehicle detection in 

reference [10].  Redmon et al. introduced a single shot 

detector model YOLO in 2016 [11] which further greater 

reduced the speed of detection and improved the accuracy. 

YOLOv2 [12] was an improvement over the original 

YOLO model with additional model features such as batch 

normalization, multi-scale training, dimensional 

clustering, and a high resolution classifier. 

III. PYTORCH YOLOV3 IMPLEMENTATION 

The PyTorch YOLOv3 model used in this paper is based on 

the Darknet-53 YOLOv3 by Joseph Redmon and Ali Farhadi 

[3].  YOLOv3 is an object detector that splits an image into a 

grid and predicts one object per grid cell.  Each grid cell then 

predicts B number of boundary boxes for an object and every 

boundary box is given a box confidence score. Only one 

object is detected per grid cell along with the conditional 

class probabilities.  A class confidence score is then 

calculated by multiplying the box confidence score by the 

conditional class probability.  YOLOv3 predicts an 

objectness score for each bounding box using logistic 

regression.  An objectness score of 1 is given to the bounding 

box prior that has the highest overlap with the ground truth 

object.  No loss is assigned to a bounding box prior if the 

prior does not overlap with a ground truth object. 

The loss function is a sum squared of error between the 

predictions and ground truth is composed of the classification 

loss, localization loss, and confidence loss. Duplicate boxes 

are removed through non-maximal suppression.   
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Unlike the original YOLO model, the final softmax function 

is replaced with individual logistic classifiers that utilize a 

binary-cross entropy loss function to predict classes.  This 

allows for multiple labels to be assigned to a bounding box. 

A. HYPERPARAMETERS 

The following hyperparameters were searched using the 

validation set mAP: 

- Learning rate: [0.00001, 0.0001, 0.0005] 

- Non-maximal suppression threshold: [0.3, 0.5, 0.8] 

- Confidence threshold: [0.01, 0.05, 0.1]  

B. TRAINING 

The confidence threshold and non-maximal suppression 

threshold were selected as hyperparameters as they filter the 

number of boundingboxesevaluatedbeforethe IOU 

calculation.  Thelearning rate 

waschosentoadjustthetraininglossspeed. 

 

 
Figure 2. YOLOv3 DarkNet-53 model architecture and 

loss function (left, right). 

 

Due to compute constraints, the hyperparameter models were 

tuned on smaller epoch sets. There is a fairly high variance 

between the training set and validation set because of the 

image differences.  Images were padded and resized to a 

416x416 shape. 

 
Figure 3. Optimized training parameters. 

 

Training was done primarily on a NVIDIA GeForce GTX 

1070 with 16GB memory on Ubuntu 18.04 using Intel core i7 

8th generation CPU and later stages was done on AWS 

p3.8x.large GPU instance. 

IV. DATASET AND RESULTS 

The Stanford car dataset consists of 8,144 stock car images 

that are well lit and clearly identify the vehicle.  The original 

Stanford car dataset did not have vehicle classification labels 

so each image was manually relabeled.  The dataset omitted 

images of buses, minibuses, trucks, and motorcycles. 

The NEXET dataset consists of 1,258 car images taken 

from videos captured from front mounted cameras and reflect 

real world data.  The NEXET images include night, twilight, 

and daytime images taken in weather conditions that include 

rain and snow [Figure 4].  The original NEXET sedan images 

label included SUV and hatchbacks label and were manually 

re-labelled to reflect the new classes 

V. PREPARE YOUR PAPER BEFORE STYLING 

A. DATASET 

The Stanford car dataset consists of 8,144 stock car images 

that are well lit and clearly identify the vehicle.  The original 

Stanford car dataset did not have vehicle classification labels 

so each image was manually relabeled.  The dataset omitted 

images of buses, minibuses, trucks, and motorcycles. 

The NEXET dataset consists of 1,258 car images taken from 

videos captured from front mounted cameras and reflect real 

world data.  The NEXET images include night, twilight, and 

daytime images taken in weather conditions that include rain 

and snow [Figure 4].  The original NEXET sedan images 

label included SUV and hatchbacks label and were manually 

re-labelled to reflect the new classes. 

 

 
Figure 4: Stanford carimage (left).  NEXET car image 

(right). 

 

The training set consists of all 8,144 Stanford car images and 

811 NEXET images (96% of all images).  The NEXET 

training images were randomly selected with the same class 

distribution as the original NEXT distribution. The validation 

set consists of 377 NEXET images randomly selected with 

the same class distribution as the full NEXET data set.  The 

vehicle classes included are sedan, hatchback, bus, pickup, 

van, truck, and SUV.  

There are nine vehicle classifications that are tested: sedan, 

hatchback, bus, pickup, minibus, van, truck, motorcycle, and 

SUV.  The training set does not include examples of minibus 

and motorcycle. 

 
Figure 5.  Class image count for training and validation 

dataset. 

For each model, the pre-processing steps were as follows: 1) 

pad each image to a square and 2) resize each image to 416 

x416.  The colors of each picture were augmented for 

saturation=1.5, exposure=1.5, and hue=0.1 

B. RESULTS 

Thetraininglossmovedclosetothe minimum withinthefirst 20 

epochsandoscillatedtherefortheremainder of theepochs.  

ThevalidationmAPpeaked at 0.1607 at the 61 epoch. 
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Figure 6. Training loss (top). Validation mAP (bottom). 

 

Using thestandard IOU_0.5 benchmark, thesedans had 

thehighestmAPscore.  The model classifiedhatchbacks, 

pickups, vans, andsuvswell at IOU_0.5. 

 

 
Figure 7.  Class and total mAP over various IOU 

thresholds. 

C.  ERROR ANALYSIS 

The images that had mAP less than 1 and misclassified 

objects can be attributed to: 

a) poor lighting conditions - night images had 

incorrectly labelled object boxes. 

b) lack of training objects - no motorcycle or scooter 

examples. 

c) perspective issues - SUV images from the rear were 

mislabeled as vans. 

d) poor image visibility - rain on windows. 

 

 
 

Figure 8. a) poor lighting conditions, b) no motorcycle or 

scooter training examples, c) perspective angles, d) poor 

visibility. 

VI. CONCLUSION 

This paper has illustrated that transfer learning using 

YOLOv3 for vehicle detection is a viable solution to avoid 

hand labelling given that the training set has a high number 

class samples and reflects the same type of images found in 

the validation set.  Data augmentation for minority classes 

could also be used to enhance the training set. 
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