
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307 (Online), Volume-10 Issue-6, July 2021

1

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F35070510521
DOI: 10.35940/ijsce.F3507.0710621
Journal Website: www.ijsce.org

Abstract: As software systems evolve, there is a growing

concern on how to manage and maintain a large codebase and
fully understand all the modules present in it. Developers spend a
significant amount of time analyzing dependencies before making
any changes into codebases. Therefore, there is a growing need
for applications which can easily make developers comprehend
dependencies in large codebases. These applications must be able
to analyze large codebases and must have the ability to identify all
the dependencies, so that new developers can easily analyze the
codebase and start making changes in short periods of time. Static
analysis provides a means of analyzing dependencies in large
codebases and is an important part of software development
lifecycle. Static analysis has been proven to be extremely useful
over the years in their ability to comprehend large codebases. Out
of the many static analysis methods, this paper focuses on static
function call graph (SFCG) which represents dependencies
between functions in the form of a graph. This paper illustrates
the feasibility of many tools which generate SFCG and locks in on
Doxygen which is extremely reliant for large codebases. The paper
also discusses the optimizations, issues and its corresponding
solutions for Doxygen. Finally, this paper presents a way of
representing SFCG which is easier to comprehend for developers.

Keywords: Static function call graph, Static analysis, Duplicate
functions, Doxygen, Cytoscape.js

I. INTRODUCTION

Large software companies write quality software on a
daily basis and track individual components very well.
Codebases written in C language have been in use in system
development, network development and many applications
mainly because C language is easier to interface with
machine hardware, consumes less memory and has faster
runtimes. It also provides great control to the programmer to
create efficient programs.

Over the years, it has been found that large codebases are
difficult to analyze due to its sheer scale and complexity
involved and the different ways in which files can be linked
with each other. There could be several links of a function
present in a file with several other functions present within
the file or other files which makes it hard for the developer to
comprehend these links while making changes to the
codebase. There exists a study by T. D. LaToza et al. [1]

Manuscript received on June 05, 2021.
Revised Manuscript received on June 12, 2021.
Manuscript published on July 30, 2021.
* Correspondence Author

Sourabh S Badhya*, Department of Computer Science, R.V. College of
Engineering, Bengaluru (Karnataka), India. Email:
sourabhsbadhya.cs17@rvce.edu.in

Shobha G, Professor, Department of Computer Science, R.V. College of
Engineering, Bengaluru (Karnataka), India. Email: shobhag@rvce.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

which indicates ease of comprehending complex codebases
using call graphs and it mentions that developers who use
visual tools for call graphs were more likely to complete a
task much faster than developers who do not use visual tools
for call graphs. Hence, there is a need for a visual
representation which can be used for easily visualizing all
function call dependencies amongst files in the codebases.

The early mention of using Call Graphs for static analysis
was done in B. G. Ryder et al. [2] which explicitly defines a
call graph as a representation in which “the nodes of the

graph are the procedures of the program; each edge
represents one or more invocations of a procedure Pj by a
procedure Pi”. The first efforts in this direction were in the
Fortran language in which call graphs were represented as a
directed acyclic graph (since Fortran 77 is a non-recursive
language). However, from then onwards several
implementations of call-graphs have arisen in different
languages and are still under active research. Most of the
implementations make use of the abstract syntax tree (AST)
of the underlying language in order to get the call
dependencies amongst different functions. However, most of
these languages have a single compiler hence making it
simple to extract the required information. This is unlike the
C language wherein multiple compilers exist and all these
compilers were written for some use case such as Intel’s

C/C++ compiler was written for Intel processors to achieve
best runtimes.

There have been several efforts in making developers
comfortable with analyzing large C codebases. Compiler
specific solutions for static analysis have been present for
several years, such as Clang Static Analyzer [3]. However,
these tools are compiler specific and since there are many
compilers, using any of these tools might result in
compatibility problems. Hence the required call graph tool
must not be dependent on a specific compiler. This paper
discusses the usage of Doxygen [4] as one such tool which is
scalable, almost accurate and compiler independent. It further
discusses how the functions and function calls can be
visualized by using Cytoscape.js [5] which is a
state-of-the-art graph theory visualization JavaScript
framework to enable a better viewing experience for
developers.

II. RELATED WORK

Several implementations have been developed in this field
in order to accurately represent function call graphs. The
early formal research into the extraction of function calls was
achieved by D. Callahan et al. [6] which proposes an
algorithm to extract function calls from Fortran 8x language
which handles recursion and has a time complexity

Generation and Visualization of Static Function
Call Graph for Large C Codebases

Sourabh S Badhya, Shobha G

https://www.openaccess.nl/en/open-publications
http://www.ijsce.org/
mailto:sourabhsbadhya.cs17@rvce.edu.in
mailto:shobhag@rvce.edu.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijsce.F3507.0710621&domain=www.ijsce.org

Generation and Visualization of Static Function Call Graph for Large C Codebases

2

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F35070510521
DOI: 10.35940/ijsce.F3507.0710621
Journal Website: www.ijsce.org

dependent exponentially on the number of procedures. It also
asserts that polynomial time complexity can be achieved by
setting an upper bound on the number of procedures. This
was one of the earliest algorithms which could identify both
normal function calls as well as recursion correctly, which is
used in modern programming languages.

A more rigorous overview of call-graph as a graph theory
problem was done in T. Reps et al. [7] whose focus was to
find solutions to a large set of interprocedural dataflow
problems in polynomial time. He also proposes that instead
of calculating the worst-time complexity of each algorithm, it
is better to bound the total cost of the operations performed at
each aspect.

An in-depth dissertation on the effect of function pointers
on call graphs was given in G. Antoniol et al. [8] wherein it
proposes an algorithm to identify function pointers called the
‘points-to’ algorithm. It also provides a quantitative
evaluation of function pointers and the key role it plays in call
graph construction.

An algorithm to specifically identify virtual function calls
as well as interfaces was also proposed in X. Zhuo et al [9].
wherein it makes use of type flow analysis to get the call
dependencies. This algorithm also takes less time and space
usage when compared to points-to algorithm. However, this
algorithm only applies to object-oriented languages.

An elaborate framework for call graph construction was
proposed by D. Grave et al. [10]-[11]. These papers propose a
general parameterized algorithm which provides a detailed
vocabulary for depicting call graph algorithms, illustrates the
differences and similarities of different algorithms and
investigates the design space of call graph algorithms. It also
assesses call graph algorithms with respect to an optimizing
compiler (Vortex compiler) and the algorithms can be
applied to any functional language.

An alternative method for call-graph construction was
proposed in Y. Terashima et al. [12] wherein a tool by the
name ‘dcgg’ was proposed which made use of DWARF2

debugging information. This paper illustrates a method
which combines both binary analysis and debugging
information in order to extract function call dependencies.
This method could extract inline functions in C code as well
virtual function calls in C++ apart from the default functions
present in code.

One of the earliest tools in order to generate call graphs is
described in G. Antoniol et al. [13] by the name ‘XOgastan’.

It was developed as a static analysis tool which makes use of
gcc/g++ compiler. It exploits the internal representation of
gcc/g++ compiler which is the abstract syntax tree and
translates it into graph exchange language representation.
The final output is in the XML format which can be easily
parsed with XML parsers. However, since it is compiler
dependent it cannot be used for codebases which are not built
on gcc/g++ compiler.

A framework was also proposed in H. Hoogendorp [14]
which describes the complete steps right from data extraction
to visualization of call graphs. This was one of the first
frameworks which accounted for scalability of the system. It
also explains about the different ways in which visualization
can be done. The problem with this framework is that
compiler wrapping must be done for every compiler. This
makes the system compiler dependent.

Another alternative method for call graph generation was
done in F. Zhang et al. [15] which proposes a static analysis

method that analyses the LLVM IR (Internal representation)
generated by compilation of source programs. This method
was used in order to analyze the parent-child relationship in
between threads which are created using the pthread library.
Compiler dependency of LLVM is the drawback of this
method. A recent and similar tool which was developed for
static analysis which is described in P. D. Schubert et al. [16]
by the name ‘Phasar’. Phasar is built as an extension to the

LLVM compiler infrastructure. The analysis is done on
LLVM IR, since solving data-flow problems on IR is easier
than source code itself. However, this makes the
implementation compiler dependent in nature.

Another tool for static analysis of source code was
proposed in M. L. Collard et al. [17] which is named as
srcML. It is a highly scalable tool and robust tool for source
code analysis. It converts source code into XML format by
making use of Clang AST, hence making the tool compiler
dependent. A similar approach for C/C++ source code is also
stated in A. M. Bogar et al. [18] in their implementation
MLSA wherein it is designed to provide support for multiple
languages. MLSA is lightweight, scalable and is written as an
island grammar (a technique used to support multiple
languages). The C/C++ code is parsed using Clang AST
which is again compiler dependent.

From all the papers featured above, we see that most of the
tools are compiler dependent. Some tools are not scalable and
hence do not work for large codebases. In order to address
these issues, we are making use of Doxygen which is an
effort to document large codebases. However, the parser that
is used in Doxygen can be exploited to extract function call
dependencies. The proposed system also discusses a unique
way of representing function calls using Cytoscape.js which
is interactive, user friendly and scalable by the number of
nodes.

III. PROPOSED SYSTEM

The proposed system makes use of Doxygen as its tool for
static analysis. It can be broken down into 2 phases -
Preprocessing phase and visualization phase.

A. Preprocessing phase

This phase mainly involves extraction of call dependencies
by using Doxygen. Doxygen requires a config file called
Doxyfile which specifies the input files that must be
analyzed, along with the output format that should be
generated. Doxygen supports various output formats like
HTML, XML, Latex, SQLite etc. In this system, we will use
SQLite [19] database since it is lightweight, reliable and
easily portable. The steps involved in preprocessing phase are
as follows –

▪ Identification of C files that are used during build /
compilation - The C files which are used to create
final executables / images are being used as input to
the Doxyfile. The identification can be either as
simple as looking into all C files in the codebase or
looking into the Make files / past execution logs and
deriving information about the C files. Once the C
files are identified which are used for a specific build,
it is inserted into the Doxyfile in the INPUT tag.

http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307 (Online), Volume-10 Issue-6, July 2021

3

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F35070510521
DOI: 10.35940/ijsce.F3507.0710621
Journal Website: www.ijsce.org

Fig. 1. A sample Doxyfile

▪ Use Doxygen to extract call dependencies - Run
Doxygen by using the Doxyfile. A sample Doxyfile
would have the following tags as specified in Fig. 1.
Some additional tags such as
LOOKUP_CACHE_SIZE,
NUM_PROC_THREADS can be set for faster
execution time for very large codebases. This will be
discussed in detail in the experimental results section.

▪ Create support for duplicate functions - Duplicate
functions are functions with the same name and same
arguments but are implemented more than once. This
is usually found in codebases wherein a functionality
has several implementations and all of them are
equally important. However, they are compiled
separately in different images. These functions are
usually seen in networking codebases wherein a single
functionality has multiple implementations and
depending upon the use case, one function is used over
another. However, such dependencies are not handled
in static analysis tools and hence support needs to be
created. This can be done as follows -

o Identify all the functions which have the
same name, return type and arguments.

o Get all the caller dependencies of all the
duplicate functions involved.

o Insert a link between the caller dependencies
with all the duplicate functions.

In other words, the caller dependencies are shared
amongst all the duplicate functions. This will make
sure that the call graph generated will reflect all the
dependencies of the duplicate functions. The data
extracted by Doxygen and the SQLite database output
is described in Fig. 2. Similarly, other fields are
defined which indicate the properties of the member
indexed. The table ‘xrefs’ has the information

pertaining to call dependencies. The fields
‘src_rowid’ and ‘dst_rowid’ are foreign keys to

‘memberdef’ table’s ‘rowid’. A record in ‘xrefs’ table

signifies that there is a call dependency from member
with ID ‘src_rowid’ to member with ID ‘dst_rowid’

provided that both these members are functions.

Fig. 2. Doxygen Sqlite Database

This is a unique way in which nodes and edges are stored

and this can be easily used in the visualization phase. As
discussed earlier, the links to the duplicate functions are
inserted to the ‘xrefs’ table and no other table is modified.
The ‘path’ table has information about the location of the
members indexed in ‘memberdef’. In summary, the entire
preprocessing phase can be shown in Fig. 3.

Fig. 3. Preprocessing phase

B. Visualization phase

The visualization phase involves using the SQLite
database in a Node.js application. Cytoscape.js is used for
graph visualization since it is highly optimized, scalable and
user-friendly. The function call graph is represented by
making use of a compound graph wherein the file in which
the function is present is symbolized as the parent node and
function present in the file is represented as the child node.
This creates a sense of inclusivity of functions within files
and is easily understandable to the developer.

The caller and callee edges are present in between different
functions and no edges are present in between files.
Cytoscape.js expects JSON formatted data in order to include
edges and nodes. Each node and edge are uniquely identified
by its ID, hence this ID is set to the row ID in ‘memberdef’
table for nodes and row ID of ‘xrefs’ table for edges to make
it unique. In order to facilitate the usage of compound graph,
Cola extension [20] is also used along with Cytoscape.js. It is
also used to preassign the position of nodes, without manual
setting of positions.

INPUT = main1.c main2.c … mainN.c
EXTRACT_ALL = YES
EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES
REFERENCES_RELATION = YES
REFERENCED_BY_RELATION = YES
LOOKUP_CACHE_SIZE = 2
GENERATE_XML = NO
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_SQLITE3 = YES
SQLITE3_OUTPUT = sqlite
SQLITE3_RECREATE_DB = YES

https://www.openaccess.nl/en/open-publications
http://www.ijsce.org/

Generation and Visualization of Static Function Call Graph for Large C Codebases

4

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F35070510521
DOI: 10.35940/ijsce.F3507.0710621
Journal Website: www.ijsce.org

Every node and edge are randomly positioned with a
predefined distance amongst them in order to avoid
overlapping.

Interactive functionalities can be implemented by creating
buttons on the nodes of the graph. Since Cytoscape.js uses
canvas element to plot the nodes and edges of a graph, all
these buttons must be plotted on top of the canvas. The
buttons are created using the context-menus extension [21].

The architecture of the visualization phase can be shown in
Fig. 4. When an input such as a function name and file name
is taken from the sidebar window, appropriate results from
the SQLite database are extracted and given to the webview
which uses Cytoscape.js and plots the nodes and directed
edges on the graph. All the information transfer between the
extension backend and the webview happens in the form of
messages sent from application backend to webview and
vice-versa.

Fig. 4. Visualization phase

IV. EXPERIMENT RESULTS

The experiments were conducted in a RHEL 8 machine
with system specifications of 8 cores, 8 GB RAM, 512 GB
hard disk. Several validations were done in order to identify
duplicate functions correctly. The source of errors was seen
in unused function pointers. However, unused function
pointers are usually considered a bad practice, but they are
valid. An example for duplicate function is shown in Fig. 5.
The graph represents a small codebase with 3 files – main.c,
a.c and b.c. The file main.c has the driver function ‘main’

which calls a function called ‘type1’ which is present in both

a.c and b.c. The definition of ‘type1’ is different in both files

and hence they call different functions. However, when the
code is compiled, only one file is passed into compilation
thereby having only one definition of ‘type1’ during
compilation.

Fig. 5. Example of duplicate functions

Table - I: Comparison of codebases on different metrics
Codebases Size of

codebase
(kLOC)

Time taken
to analyze
(s)

Output
SQLite
database
(MB)

Redis 181.118 9.861 4.4
OpenSSL 522.121 34.607 14
PostgreSQL 1469.177 62.677 25
Linux 20550.393 10255.646 732

A comparison was done amongst 4 codebases - Redis [22],

OpenSSL [23], PostgreSQL [24] and Linux [25]. Table. I
illustrate the results obtained when Doxygen was run on these
codebases. This table indicates that smaller codebases having
smaller number of functions generate less amount of data
when compared to its larger counterpart which is the obvious
norm. It also indicates that if function call dependencies are
more in a codebase, then a lot of data is generated, hence
taking more time. This is especially seen in Linux codebase
since the order at which memory increases is higher than
order at which size of the codebases increases. Higher
variable usage is also a potential reason for large database
output as well since Doxygen generates data for variables as
well.

Fig. 6. Time required v/s. Lookup cache size

Fig. 7. Cache misses v/s. Lookup cache size

Optimization on execution performance was also

considered. Doxygen was not originally coded for providing
the best runtime behavior, however efforts were made to
bring in efficiency. Doxygen makes use of a symbol lookup
cache while parsing the code whose sizes can be manipulated
to bring better performance. It is controlled by the following
tag - LOOKUP_CACHE_SIZE.

http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307 (Online), Volume-10 Issue-6, July 2021

5

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F35070510521
DOI: 10.35940/ijsce.F3507.0710621
Journal Website: www.ijsce.org

The values of this tag ranges from 1 to 9, which indicates
that the size of the symbol lookup cache ranges from 217 to
225 symbol storage. Given the codebase, an optimal number
needs to be set to decrease execution time as well as not use
excessive memory. The effect of lookup cache size is not
considerable for small codebases. The graph in Fig. 6
indicates how execution time decreases with increase in
lookup cache size for Linux codebase. After the size of 221
(when LOOKUP_CACHE_SIZE = 5), the number of
symbols remains constant and further increase in size is
wasteful. Similar experiment was also conducted on the
symbol lookup cache misses with the lookup cache size for
Linux codebase whose graph is indicated in Fig. 7. Both
graphs indicate that optimal size for symbol lookup cache
must be reached to achieve the best execution time.

The graphs generated by using Cytoscape.js are
represented in the form of compound graphs by using Cola
extension. One such graph is represented in Fig. 8. It is
observed that as the complexity of the graph and number of
nodes increases, the time required to render the graph also
increases since there is automatic positioning of nodes. Time
required to render the graph also increases with increase in
the number of extensions used. Adding buttons on top of
nodes by using the context-menus extension slows down the
rendering of large graphs. However, if the number of nodes is
300-500 which is normally the number of nodes viewed by
developers, this does not affect performance significantly.

Fig. 8. Call graph generated for a small component of

Redis

V. CONCLUSION

This paper illustrates how Doxygen can be utilized to
generate graphs which are scalable and efficient. It highlights
the effectiveness of using compiler-independent tools for
generating static function call graphs and focuses on visual
representation which is dynamic and compatible with the
web. It also provides a way of identifying duplicate functions.
Additionally, it also explains the use of optimizations of
Doxygen and compares it with several codebases.

Possible improvements such as execution performance and
better parsing methods can be used in order to bring down
errors. Further improvements such as real-time syncing with
the codebases must be explored which can make the tool
more effective for developers.

REFERENCES

1. T. D. LaToza, B. A. Myers, “Visualizing call graphs” in IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2011, pp. 117-124.

2. B. G. Ryder, “Constructing the Call Graph of a Program” in IEEE
Transactions on Software Engineering, vol. SE-5, no. 3, May 1979,
pp. 216-226.

3. Clang Static Analyzer, Available: https://clang-analyzer.llvm.org/
4. D. V. Heesch, Doxygen. Available:

https://www.doxygen.nl/index.html
5. M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, G. D. Bader.

‘Cytoscape.js: a graph theory library for visualisation and analysis.’

Bioinformatics. Volume 32, Issue 2, 15 January 2016, pp. 309-311.
6. D. Callahan, A. Carle, M. Wolcott Hall, K. Kennedy, “Constructing

the Procedure Call Multigraph” in IEEE Transactions on Software
Engineering, Volume 16, Issue 4, April 1990, pp. 483-487.

7. T. Reps, S. Horwitz, M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, January 1995, pp. 49-61.

8. G. Antoniol, F. Calzolari, P. Tonella, "Impact of function pointers on
the call graph" in Proceedings of the Third European Conference on
Software Maintenance and Reengineering, 1999, pp. 51-59.

9. X. Zhuo, C. Zhang, “A Relational Static Semantics for Call Graph
Construction” in Formal Methods and Software Engineering, ICFEM
2019, Lecture Notes in Computer Science, Springer, Cham, Volume
11852, 2019, pp. 322-335.

10. D. Grove, C. Chambers, “A framework for call graph construction
algorithms” in ACM Transactions on Programming Languages and
Systems, Volume 23, Issue 6, November 2011, pp. 685-746.

11. D. Grove, G. DeFouw, J. Dean, C. Chambers, “Call graph
construction in object-oriented languages” in ACM SIGPLAN Notices,
Volume 32, Issue 10, October 1997, pp. 108-124.

12. Y. Terashima, K. Gondow, “Static Call Graph Generator for C++
using Debugging Information” in 14th Asia-Pacific Software
Engineering Conference (APSEC'07), 2007, pp. 127-134.

13. G. Antoniol, M. Di Penta, G. Masone, U. Villano, "XOgastan:
XML-oriented gcc AST analysis and transformations" in Proceedings
Third IEEE International Workshop on Source Code Analysis and
Manipulation, 2003, pp. 173-182.

14. H. Hoogendorp, “Extraction and visual exploration of call graphs for
Large Software Systems” in Master’s thesis, University of Groningen,
2010.

15. F. Zhang, N. Gu, J. Su, “A Static Call Graph Construction Method
Based on Simulation Execution” in IEEE 10th International
Conference on Software Engineering and Service Science (ICSESS),
2019, pp. 72-76.

16. P. D. Schubert, B. Hermann, E. Bodden, “PhASAR: An
Inter-procedural Static Analysis Framework for C/C++” in Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2019, pp. 393-410.

17. M. L. Collard, J. I. Maletic, “srcML 1.0: Explore, Analyze, and
Manipulate Source Code” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2016, pp. 649-649.

18. A. M. Bogar, D. Lyons, D. Baird, “Lightweight Call-Graph
Construction for Multilingual Software Analysis”, 13th International
Conference on Software Technologies (ICSoft), July 2018, pp.
362-371.

19. D. R. Hipp, SQLite, Available: https://www.sqlite.org/index.html.
20. Cytoscape-cola extension. Available:

https://github.com/cytoscape.js-cola
21. U. Dogrusoz, A. Karacelik, I. Safarli, H. Balci, L. Dervishi, and M.C.

Siper, “Efficient methods and readily customizable libraries for
managing complexity of large networks” in PLoS ONE, 2018.

22. Redis source code. Accessed on 24th May 2021. Link:
https://download.redis.io/releases/redis-6.2.3.tar.gz

23. PostgreSQL source code. Accessed on 24th Many 2021 Link:
https://ftp.postgresql.org/pub/source/v13.3/postgresql-13.3.tar.gz

24. OpenSSL source code. Accessed on 24th May 2021. Link:
https://www.openssl.org/source/openssl-3.0.0-alpha17.tar.gz

25. Linux kernel source code. Accessed on 24th May 2021. Link:
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.12.7.tar.xz

https://www.openaccess.nl/en/open-publications
http://www.ijsce.org/

Generation and Visualization of Static Function Call Graph for Large C Codebases

6

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.F35070510521
DOI: 10.35940/ijsce.F3507.0710621
Journal Website: www.ijsce.org

Author-1
Photo

Author-1
Photo

AUTHORS PROFILE

Sourabh S Badhya, is an undergraduate student who is
pursuing Computer Science & Engineering in R.V.
College of Engineering, Bengaluru. His area of interests
lies in Machine Learning and Natural Language
Processing. He has 3 publications in his name in the

Natural Language Processing domain.

Dr. Shobha G, is a professor in R. V. College of
Engineering, Bengaluru. Her area of interests lies in data
mining, image processing and networking. She has a
teaching experience of 25 years and research experience
of 14 years. She has 145 publications in international

journals and conferences. She has guided 30 UG projects, 40 PG projects and
7 Ph.D. students. She also has 4 patents and has been a reviewer of several
books.

http://www.ijsce.org/

