Study of Mechanical Behavior of Geopolymeric Mortars Reinforced with Ichu Fibers

Article Preview

Abstract:

Reinforced geopolymeric mortars were manufactured by mixing mining tailings, fine sand, Ichu fibers (in variable percentages), sodium hydroxide and water. The microstructure of the obtained mortars consisted of a continuous geopolymer binder phase with sand particles and Ichu fibers dispersed within the binder phase. The real density and average porosity of the reinforced mortars was 2.74 g/cm3 and 34%, respectively. It was possible to verify the influence of the addition of Ichu fibers on the mechanical response in uniaxial compression of the studied mortars, due to the poor interface between the geopolymer and the fibers. The mechanical results revealed a systematic reduction of the maximum compressive strength when the volume of Ichu fibers in the mortar mixtures was increased. On the other hand, a higher degree of deformation was evidenced in mortar mixtures containing a greater amount of Ichu fibers, reaching deformation values ​​of up to 5%. The maximum resistance values ​​found were from 2.87 to 20.76 MPa for samples with 8 and 0 vol.% of Ichu fibers added, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-174

Citation:

Online since:

September 2022

Export:

Price:

* - Corresponding Author

[1] F. Huamán-Mamani, D. Mayta-Ponce, and G. Rodríguez-Guillén, Fabrication and Evaluation of the Mechanical Behavior of Geopolymer Compounds Using Waste from the Mining and Construction Industry,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1054, no. 1, p.012002, Feb. 2021,.

DOI: 10.1088/1757-899x/1054/1/012002

Google Scholar

[2] G. Furtos, L. Silaghi-Dumitrescu, P. Pascuta, C. Sarosi, and K. Korniejenko, Mechanical Properties of Wood Fiber Reinforced Geopolymer Composites with Sand Addition,, J. Nat. Fibers, vol. 18, no. 2, p.285–296, Feb. 2021,.

DOI: 10.1080/15440478.2019.1621792

Google Scholar

[3] F. . Huamán-Mamani, J. F. Gamarra-Delgado, J. J. Paredes-Paz, V. C. Bringas-Rodríguez, D. L. Mayta-Ponce, and G. P. Rodríguez-Guillén, Creep of geopolymeric concrete obtained from mining tailings,, in Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, Aug. 2020, p.1–8,.

DOI: 10.11159/mmme20.132

Google Scholar

[4] G. Silva, S. Kim, R. Aguilar, and J. Nakamatsu, Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry,, Sustain. Mater. Technol., vol. 23, p. e00132, Apr. 2020,.

DOI: 10.1016/j.susmat.2019.e00132

Google Scholar

[5] K. Korniejenko, M. Łach, N. Dogan-Saglamtimur, G. Furtos, and J. Mikuła, The overview of mechanical properties of short natural fiber reinforced geopolymer composites,, Environ. Res. Technol., vol. 3, no. 1, p.21–32, Mar. 2020,.

DOI: 10.35208/ert.671713

Google Scholar

[6] K. Korniejenko, E. Frączek, E. Pytlak, and M. Adamski, Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers,, Procedia Eng., vol. 151, p.388–393, 2016,.

DOI: 10.1016/j.proeng.2016.07.395

Google Scholar

[7] R. Chen, S. Ahmari, and L. Zhang, Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer,, J. Mater. Sci., vol. 49, no. 6, p.2548–2558, Mar. 2014,.

DOI: 10.1007/s10853-013-7950-0

Google Scholar

[8] A. R. G. de Azevedo et al., Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review,, Polymers (Basel)., vol. 13, no. 15, p.2493, Jul. 2021,.

DOI: 10.3390/polym13152493

Google Scholar

[9] N. Ranjbar and M. Zhang, Fiber-reinforced geopolymer composites: A review,, Cem. Concr. Compos., vol. 107, no. November 2019, p.103498, Mar. 2020,.

Google Scholar

[10] D. L. Mayta-Ponce, P. Soto-Cruz, and F. A. Huamán-Mamani, Thermomechanical evaluation of new geopolymer binder from demolition waste and ignimbrite slits for application in the construction industry,, MRS Adv., vol. 4, no. 54, p.2951–2958, Nov. 2019,.

DOI: 10.1557/adv.2019.474

Google Scholar

[11] K. L. Scrivener, V. M. John, and E. M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry,, Cem. Concr. Res., vol. 114, no. February, p.2–26, Dec. 2018,.

DOI: 10.1016/j.cemconres.2018.03.015

Google Scholar

[12] E. Worrell, L. Price, N. Martin, C. Hendriks, and L. O. Meida, Carbon Dioxide Emissions from the Global Cement Industry*,, Annu. Rev. Energy Environ., vol. 26, no. 1, p.303–329, Nov. 2001,.

Google Scholar

[13] World Business Council for Sustainable Development, Cement Industry Energy and CO2 Performance: Getting the Numbers Right (GNR),, 2016. [Online]. Available: https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/Resources/Cement-Industry-Energy-and-CO2-Performance.

Google Scholar

[14] R. Malenab, J. Ngo, and M. Promentilla, Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite,, Materials (Basel)., vol. 10, no. 6, p.579, May 2017,.

DOI: 10.3390/ma10060579

Google Scholar

[15] T. Alomayri, F. U. A. Shaikh, and I. M. Low, Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites,, Compos. Part B Eng., vol. 60, p.36–42, Apr. 2014,.

DOI: 10.1016/j.compositesb.2013.12.036

Google Scholar

[16] T. Alomayri, F. U. A. Shaikh, and I. M. Low, Characterisation of cotton fibre-reinforced geopolymer composites,, Compos. Part B Eng., vol. 50, p.1–6, Jul. 2013,.

DOI: 10.1016/j.compositesb.2013.01.013

Google Scholar

[17] G. Silva, S. Kim, B. Bertolotti, J. Nakamatsu, and R. Aguilar, Optimization of a reinforced geopolymer composite using natural fibers and construction wastes,, Constr. Build. Mater., vol. 258, p.119697, Oct. 2020,.

DOI: 10.1016/j.conbuildmat.2020.119697

Google Scholar

[18] M. Alshaaer, Synthesis, Characterization, and Recyclability of a Functional Jute-Based Geopolymer Composite,, Front. Built Environ., vol. 7, no. March, Mar. 2021,.

DOI: 10.3389/fbuil.2021.631307

Google Scholar

[19] M. Frías, L. Caneda-Martínez, M. I. Sánchez de Rojas, C. Tenazoa, and E. Flores, Scientific and technical studies on eco-efficient binary cements produced with thermally activated ichu grass: Behaviour and properties,, Cem. Concr. Compos., vol. 111, no. January, p.103613, Aug. 2020,.

DOI: 10.1016/j.cemconcomp.2020.103613

Google Scholar

[20] S. Mori, C. Tenazoa, S. Candiotti, E. Flores, and S. Charca, Assessment of Ichu Fibers Extraction and Their Use as Reinforcement in Composite Materials,, J. Nat. Fibers, vol. 17, no. 5, p.700–715, 2020,.

DOI: 10.1080/15440478.2018.1527271

Google Scholar

[21] M. Ardanuy, J. Claramunt, and R. D. Toledo Filho, Cellulosic fiber reinforced cement-based composites: A review of recent research,, Constr. Build. Mater., vol. 79, p.115–128, Mar. 2015,.

DOI: 10.1016/j.conbuildmat.2015.01.035

Google Scholar

[22] H. Zeballos, J. A. Ochoa, and E. López, Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca. Lima, Perú: DescoSur, (2010).

Google Scholar

[23] C. Tenazoa, H. Savastano, S. Charca, M. Quintana, and E. Flores, The Effect of Alkali Treatment on Chemical and Physical Properties of Ichu and Cabuya Fibers,, J. Nat. Fibers, vol. 18, no. 7, p.923–936, Jul. 2021,.

DOI: 10.1080/15440478.2019.1675211

Google Scholar

[24] Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, A review on the degradability of polymeric composites based on natural fibres,, Mater. Des., vol. 47, p.424–442, May 2013,.

DOI: 10.1016/j.matdes.2012.11.025

Google Scholar

[25] M. Camargo, E. Adefrs Taye, J. Roether, D. Tilahun Redda, and A. Boccaccini, A Review on Natural Fiber-Reinforced Geopolymer and Cement-Based Composites,, Materials (Basel)., vol. 13, no. 20, p.4603, Oct. 2020,.

DOI: 10.3390/ma13204603

Google Scholar