Mechanical Characterization of a Masonry System Made of Alkaline Activated Pozzolana Blocks

Article Preview

Abstract:

The development of alkaline activated materials has enabled the production of eco-friendly alternatives for the construction industry. In the present article, the mechanical characterization of a new structural masonry system composed of fiber-reinforced lightweight pozzolana-based blocks and cement-lime mortar was performed. The mechanical characterization involved uniaxial compression tests in prisms and diagonal compression in wallets. The results indicate that the compressive and shear strength of the masonry system is up to 3.24 MPa and 0.38, respectively. The results obtained indicate that the evaluated system is structurally efficient and that can be used as both non-load and load-bearing walls.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1007)

Pages:

111-117

Citation:

Online since:

August 2020

Export:

Price:

* - Corresponding Author

[1] K. Venugopal, Radhakrishna, V. Sasalatti, Development of Alkali Activated Geopolymer Masonry Blocks, IOP Conference Series: Mater. Sci. Eng. 149 (2016).

DOI: 10.1088/1757-899x/149/1/012072

Google Scholar

[2] A. Bustos-García, E. Moreno-Fernández, R. Zavalis, J. Valivonis, Diagonal compression tests on masonry wallets coated with mortars reinforced with glass fibers, Mater. Struct. 52(3) (2019).

DOI: 10.1617/s11527-019-1360-y

Google Scholar

[3] N. N. Thaickavil, J. Thomas, Behaviour and strength assessment of masonry prisms, Case Studies Construct. Mater. 8 (2018) 23-38.

DOI: 10.1016/j.cscm.2017.12.007

Google Scholar

[4] M. Abdullah, W. Ibrahim, M. Tahir, The properties and durability of fly ash-based geopolymeric masonry bricks, Eco-Efficient Masonry Bricks and Blocks, 12 (2015) 273-287.

DOI: 10.1016/b978-1-78242-305-8.00012-7

Google Scholar

[5] T. Sturm, L. F. Ramos, P. B. Lourenço, Characterization of dry-stack interlocking compressed earth blocks, Mater. Struct.48(9) (2014) 3059-3074.

DOI: 10.1617/s11527-014-0379-3

Google Scholar

[6] G. Vasconcelos, P. Lourenço, Experimental characterization of stone masonry in shear and compression, Constr. Build. Mater. 23(11) (2009) 3337-3345.

DOI: 10.1016/j.conbuildmat.2009.06.045

Google Scholar

[7] J. A.Thamboo, M. Dhanasekar, Correlation between the performance of solid masonry prisms and wallettes under compression, J. Build. Eng. 22 (2019) 429-438.

DOI: 10.1016/j.jobe.2019.01.007

Google Scholar

[8] H. B. Kaushik, D. C. Rai, S. K. Jain, Stress-strain characteristics of clay brick masonry under uniaxial compression, J. Mater. Civil Eng. 19 (9) (2007) 728-739.

DOI: 10.1061/(asce)0899-1561(2007)19:9(728)

Google Scholar

[9] M. Numada, In Plane Behavior of Polypropylene and FRP Retrofitted Brick Masonry Wallets under Diagonal Compression Test, 15th World Conference on Earthquake Engineering (15WCEE), (2012).

Google Scholar

[10] C. S. Barbosa, P. B. Lourenço, J. B. Hanai, On the compressive strength prediction for concrete masonry prisms, Mater. Struct. 43(3) (2009) 331–344.

DOI: 10.1617/s11527-009-9492-0

Google Scholar

[11] V. G. Haach, G. Vasconcelos, P. B. Lourenço, Assessment of Compressive Behavior of Concrete Masonry Prisms Partially Filled by General Mortar, J. Mater. Civil Eng. 26(10) (2014) 04014068.

DOI: 10.1061/(asce)mt.1943-5533.0000956

Google Scholar

[12] V. G. Haach, G. Vasconcelos, P. B. Lourenço, G. Mohamad, Influence of the Mortar on the Compressive Behavior of Concrete Masonry Prisms, Revista da Associação Portuguesa de Análise Experimental de Tensões, 18 (2010) 79-84.

Google Scholar

[13] S. Babaeidarabad, D. Arboleda, G. Loreto, A. Nanni, Shear strengthening of un-reinforced concrete masonry walls with fabric-reinforced-cementitious-matrix, Constr. Build. Mater. 65 (2014) 243-253.

DOI: 10.1016/j.conbuildmat.2014.04.116

Google Scholar

[14] V. G. Haach, G. Vasconcelos, P. B. Lourenço, Study of the behaviour of reinforced masonry wallets subjected to diagonal compression through numerical modelling, 9th International Masonry Conference (9IMC2014), (2014).

Google Scholar

[15] J. Muñoz, T. Easton, J. Dahmen, Using alkali-activated natural aluminosilicate minerals to produce compressed masonry construction materials, Constr. Build. Mater. 95 (2015) 86-95.

DOI: 10.1016/j.conbuildmat.2015.07.144

Google Scholar

[16] B. C. McLellan, R. P. Williams, J. Lay, A. Van Riessen, G. D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod. 19 (9-10) (2011) 1080-1090.

DOI: 10.1016/j.jclepro.2011.02.010

Google Scholar

[17] C. Suksiripattanapong, S. Horpibulsuk, P. Chanprasert, P. Sukmak, A. Arulrajah, Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge, Constr. Build. Mater. 82 (2015) 20-30.

DOI: 10.1016/j.conbuildmat.2015.02.040

Google Scholar

[18] G. Silva, J. Salirrosas, G. Ruiz, S. Kim, J. Nakamatsu, R. Aguilar, Evaluation of fire, high-temperature and water erosion resistance of fiber-reinforced lightweight pozzolana-based geopolymer mortars, IOP Conference Series: Mater. Sci. Eng. 706 (2019) 012016.

DOI: 10.1088/1757-899x/706/1/012016

Google Scholar

[19] G. Silva, D. Castañeda, S. Kim, A. Castañeda., B. Bertolotti, L. Ortega-San-Martin, J. Nakamatsu, R. Aguilar, Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes, Constr. Build. Mater. 215 (2019) 633-643.

DOI: 10.1016/j.conbuildmat.2019.04.247

Google Scholar

[20] M. Deyazada, B. Vandoren, D. Dragan, H. Degée, Experimental investigations on the resistance of masonry walls with AAC thermal break layer, Constr. Build. Mater. 224 (2019) 474–492.

DOI: 10.1016/j.conbuildmat.2019.06.205

Google Scholar

[21] D. Markulak, I. Radić, V. Sigmund, Cyclic testing of single bay steel frames with various types of masonry infill, Eng. Struct. 51 (2013) 267–277.

DOI: 10.1016/j.engstruct.2013.01.026

Google Scholar

[22] EN 459-1, Building limes, part 1: definitions, specifications and conformity criteria. European Committee for Standardisation CEN, (2001).

Google Scholar

[23] ASTM C617. Standard Practice for Capping Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, (2015).

Google Scholar

[24] ASTM C1314. Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, West Conshohocken, PA, (2018).

Google Scholar

[25] ASTM E519. Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, ASTM International, West Conshohocken, PA, (2015).

Google Scholar