Bioactive Membranes of Polymeric Micro and Nanocomposites Prepared with the Natural Anionic Marine Polysaccharide (Alginate) Functionalized with Extracts of Cat’s Claw (Uncaria tomentosa) and Aloe vera

Article Preview

Abstract:

In this research, the nanostructured alginate (AL) membranes were prepared with natural bioactive compound, Cat's claw (Uncaria tomentosa) extract (UT). UT is broadly used as an anti-inflammatory agent and the effect on the treatment of Rheumatism was proved by many scientists. For this reason, we added this bioactive compound in the process of AL membrane formulation to improve the biological activities. 2-dimentional (2-D) and 3-dimentional (3-D) AL membranes were prepared with and without addition of UT extracts. 3-D AL membranes were prepared using ultrasound with high intensity. The wettability of AL membranes depending on the concentration of AL was studied by measuring contact angle and surface energy. Stabilization agent, poloxamer 407, was used to improve the stability of AL nanoemulsion. The effects of UT in 3-D AL membranes were studied by measuring swelling behavior and contact angle. The surface morphology was measured with scanning electron microscopy (SEM). Comparing to 2-D AL membranes, 3-D AL membranes presented rougher surface due to AL nanoparticles presence. When UT was incorporated in AL membranes, strong antioxidant activity and higher contact angle and swelling ratio were observed than non-UT incorporated AL membranes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1007)

Pages:

131-136

Citation:

Online since:

August 2020

Export:

Price:

* - Corresponding Author

[1] L. Bissett, Skin care as a tool in the prevention of health care-associated infection-critical review, Br. J. Community Nurs. 15(5) (2010) 226-231.

DOI: 10.12968/bjcn.2010.15.5.47947

Google Scholar

[2] S. L. Prescott, D. L. Larcombe, A. C. Logan, C. West, W. Burks, L. Caraballo, M. Levin, E. V. Etten, P. Horwitz, A. Kozyrskyj, D. E. Campbell, The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming, World Allergy Organ. J. 10(1) (2017) 29.

DOI: 10.1186/s40413-017-0160-5

Google Scholar

[3] R. F. Pereira, C. C. Barrias, P. L. Granja, P. J. Bartolo, Advanced biofabrication strategies for skin regeneration and repair, Nanomed. 8(4) (2013) 603-621.

DOI: 10.2217/nnm.13.50

Google Scholar

[4] A. D. Metcalfe, M. F. Ferguson, Bioengineering skin using mechanisms of regeneration and repair, Biomaterials 28(34) (2007) 5100–5113.

DOI: 10.1016/j.biomaterials.2007.07.031

Google Scholar

[5] A. Sood, M. S. Granick, N. L. Tomaselli, Wound Dressings and Comparative Effectiveness Data, Advances in wound care 3(8) (2014) 511-529.

DOI: 10.1089/wound.2012.0401

Google Scholar

[6] P. G. Bowler, B. I. Duerden, D. G. Armstrong, Wound microbiology and associated approaches to wound management, Clinic. Microbio. Rev. 14(2) (2001) 244-269.

DOI: 10.1128/cmr.14.2.244-269.2001

Google Scholar

[7] A. A. Dorai, Wound care with traditional, complementary and alternative medicine, Indian J. Plast. Surg. 45(2) (2012) 418-424.

DOI: 10.4103/0970-0358.101331

Google Scholar

[8] S. Dhivya, V. V. Padma, E. Santhini, Wound dressings-A review, Biomed. 5(4) (2015) 22.

DOI: 10.7603/s40681-015-0022-9

Google Scholar

[9] R. Pereira, A. Mendes, P. Bartolo, Alginate/Aloe vera hydrogel films for biomedical applications, Proc. CIRP, 5 (2013) 210-215.

DOI: 10.1016/j.procir.2013.01.042

Google Scholar

[10] S. Kim, J. Nakamatsu, D. Mautura, F. Oliveira, Formation, antimicrobial activity, and controlled release from cotton fibers with deposited functional polymers, J. Appl. Polym. Sci. 133(8) (2016).

DOI: 10.1002/app.43054

Google Scholar

[11] M. Sandoval, N. N. Okuhama, X. J. Zhang, L. A. Condez, J. Lao, F. M. Angeles, R. A. Musah, P. Bobrowski, M. J. S. Miller, Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content, Phytomed. 9(4) (2002) 325-337.

DOI: 10.1078/0944-7113-00117

Google Scholar

[12] B. C. Azevedo, M. Roxo, M. C. Borges, H. Peixoto, E. J. Crevelin, B. W. Bertoni, S. H. T. Contini, A. A. Lopes, S. C. França, A. M. Pereira, M. Wink, Antioxidant Activity of an Aqueous Leaf Extract from Uncaria tomentosa and Its Major Alkaloids Mitraphylline and Isomitraphylline in Caenorhabditis elegans, Molecules, 24(18) (2019) 3299.

DOI: 10.3390/molecules24183299

Google Scholar

[13] S. Kim, K. I. Requejo, J. Nakamatsu, K. N. Gonzales, F. G. Torres, A. Cavaco-Paulo, Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan, Proc. Biochem. 59 (2017) 65-76.

DOI: 10.1016/j.procbio.2016.12.002

Google Scholar

[14] H. Liu, R. Adhikari, Q. Guo, B. Adhikari, Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films, J. Food Eng. 116(2) (2013) 588-597.

DOI: 10.1016/j.jfoodeng.2012.12.037

Google Scholar

[15] J. R. Rodriguez-Nunez, T. J. Madera-Santana, D. I. Machado, J. Lopez-Cervantes, H. S. Valdez, Chitosan/Hydrophilic Plasticizer-Based Films: Preparation, Physicochemical and Antimicrobial Properties, J. Polym. Environ. 22(1) (2014) 41-51.

DOI: 10.1007/s10924-013-0621-z

Google Scholar

[16] S. Shankar, S. Kasapis, J. W. Rhim, Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles, Int. J. Bio. Macromol. 118 (2018) 1824-1832.

DOI: 10.1016/j.ijbiomac.2018.07.026

Google Scholar

[17] H. M. Shang, Y. Wang, K, Takahashi, G. Z. Cao, D. Li, Y. N. Xia, Nanostructured superhydrophobic surfaces, J. Mater. Sci. 40(13) (2005) 3587-3591.

DOI: 10.1007/s10853-005-2892-9

Google Scholar