The Concept of Mining Enterprises Progress on the Basis of Underground Coal Gasification Method Characteristic

Article Preview

Abstract:

The authors of the paper consider the concept of further prospective development of mining enterprises. The basis of this concept are scientific results obtained during the study of physical and chemical processes of solids conversion into the gaseous state: coal → gaseous fuels. It was established that the main base of development of mining regions is a mining power-chemical complex. The basic segment of which is a well underground coal gasification station. It is established that increase of indicators of efficient operation of the station from gasification is possible by synthesis of technical and technological decisions on the use of coal seam energy. When coal gasification is over, the gasifier passes into a mode of thermal generator with the use of alothermal technique to remove heat and thermic decomposition products from the degassed space of the gasifier. Generator gas at its initial temperature (1100 – 1300oС) around an underground gasifier creates a powerful heat boiler with a temperature regime of 200 – 300oС. It was established that at work of six gasifiers on a coal seam with thickness of 1.0 m with geometrical parameters each at a width of 30 m and at the length of 450 m energy-thermal power will be 237.8 MW. At the same time, additional energy resources can be obtained by involving segments of alternative forms of energy supply to the life cycle of the mining enterprise.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

137-147

Citation:

Online since:

May 2019

Export:

Price:

* - Corresponding Author

[1] Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology. Article in press. https://doi.org/10.1016/j.ijmst.2018.05.014.

DOI: 10.1016/j.ijmst.2018.05.014

Google Scholar

[2] Filonenko, O (2018). Sustainable development of Ukrainian iron and steel industry enterprises in regards to the bulk manufacturing waste recycling efficiency improvement. Mining of Mineral Deposits, 12(1), 115-122. https://doi.org/10.15407/mining12.01.115.

DOI: 10.15407/mining12.01.115

Google Scholar

[3] Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35. https://doi.org/10.29202/nvngu/2018-4/3.

DOI: 10.29202/nvngu/2018-4/3

Google Scholar

[4] Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 231-235. https://doi.org/10.1201/b16354-43.

DOI: 10.1201/b16354-42

Google Scholar

[5] Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015, 441-443. https://doi.org/10.1201/b19901-77.

DOI: 10.1201/b19901-77

Google Scholar

[6] Pivnyak, G., Dychkovskyi, R., Falshtynskyi, V., & Cabana, E. C. (2017). Energy Efficiency and Economic Aspects of Mining Wastes Utilization within the Closed Cycle of Underground Gasifier. Advanced Engineering Forum, 25, 1-10. https://doi.org/10.4028/www.scientific.net/aef.25.1.

DOI: 10.4028/www.scientific.net/aef.25.1

Google Scholar

[7] Medunić, G., Mondol, D., Rađenović, A., & Nazir, S. (2018). Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13–21. https://doi.org/10.17794/rgn.2018.3.2.

DOI: 10.17794/rgn.2018.3.2

Google Scholar

[8] Ganushevych, K., Sai, K., & Korotkova, A. (2014). Creation of gas hydrates from mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 505-509. https://doi.org/10.1201/b17547-85.

DOI: 10.1201/b17547-85

Google Scholar

[9] Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23-33. https://doi.org/10.15407/mining11.03.023.

DOI: 10.15407/mining11.03.023

Google Scholar

[10] Basu, R. (2017). Evaluation of some renewable energy technologies. Min. Miner. Depos., 11(4), 29-37. https://doi.org/10.15407/mining11.04.029.

Google Scholar

[11] Bazaluk, O. (2017). Plato's and Isocrates' traditions in the development of educational theories in the history of culture. Analele Universitatii din Craiova, Seria Filozofie 40(2), 5-18.

Google Scholar

[12] Rozin, V.M. (2017). Technology as a Time Challenge: Study, Concept and Types of Technology. Philosophy and Cosmology, (19), 133-142.

Google Scholar

[13] Bazaluk, O., & Matusevych, T. (2014). Otto friedrich bollnow: Search for the fundamentals of existential philosophy. Analele Universitatii din Craiova, Seria Filozofie, 34(2), 5-16.

Google Scholar

[14] Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[15] Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.

DOI: 10.3997/2214-4609.201408382

Google Scholar

[16] Medianyk, V., & Cherniaiev, O. (2018). Technological aspects of technogenic disturbance liquidation in the areas of coal-gas deposits development. E3S Web of Conferences, 60, 00037. https://doi.org/10.1051/e3sconf/20186000037.

DOI: 10.1051/e3sconf/20186000037

Google Scholar

[17] Vladyko, O., Maltsev, D., & Shapovalov, Ya. (2016). Choice of development method for technogenic mineral deposits by technological criteria. Min. Miner. Depos., 10(4), 74-82. https://doi.org/10.15407/mining10.04.074.

DOI: 10.15407/mining10.04.074

Google Scholar

[18] Perkov, Ye., & Perkova, T. (2017). Recycling of Prydniprovska thermal power plant fly ash. Mining of Mineral Deposits, 11(1), 106-112. https://doi.org/10.15407/mining11.01.106.

DOI: 10.15407/mining11.01.106

Google Scholar

[19] Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21–29.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[20] Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10. https://doi.org/10.1201/b16355-2.

DOI: 10.1201/b16355-2

Google Scholar

[21] Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20.

DOI: 10.1201/b17547-20

Google Scholar

[22] Beshta, O.S. (2012). Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 98-107.

DOI: 10.29202/nvngu/2019-2/12

Google Scholar

[23] Pivnyak, G., Razumny, Y., Zaika, V. (2009). The problems of power supply and power saving in the mining industry of Ukraine. Archives of Mining Sciences, 54(1), 5-12.

Google Scholar

[24] Gorova, A., Pavlychenko, A., Borysovs'ka, O., & Krups'ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 207-209. https://doi.org/10.1201/b16354-38.

DOI: 10.1201/b16354-37

Google Scholar

[25] Gorova, A., Pavlychenko, A., & Borysovs'ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 169-171. https://doi.org/10.1201/b16354-30.

DOI: 10.1201/b16354-29

Google Scholar

[26] Smol, M., Kulczycka, J., & Avdiushchenko, A. (2017). Circular economy indicators in relation to eco-innovation in European regions. Clean Technologies and Environmental Policy, 19(3), 669-678. https://doi.org/10.1007/s10098-016-1323-8.

DOI: 10.1007/s10098-016-1323-8

Google Scholar

[27] Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19.

DOI: 10.1201/b11329-19

Google Scholar

[28] Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. Journal of Sustainable Mining, 12(3), 8-16. https://doi.org/10.7424/jsm130302.

DOI: 10.7424/jsm130302

Google Scholar

[29] Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[30] Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409-1414. https://doi.org/10.1080/02329290290024925.

DOI: 10.1080/02329290290024925

Google Scholar

[31] Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14-17.

Google Scholar

[32] Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.

DOI: 10.29202/nvngu

Google Scholar

[33] Majkherchik, T., Gajko, G.I., & Malkovskij, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol', (11), 48-54.

Google Scholar

[34] Pankratova, N. D., Gayko, G. I., Kravets, V. G., & Savchenko, I. A. (2016). Problems of Megapolises Underground Space System Planning. Journal of Automation and Information Sciences, 48(4), 32-38. https://doi.org/10.1615/jautomatinfscien.v48.i4.40.

DOI: 10.1615/jautomatinfscien.v48.i4.40

Google Scholar

[35] Khomenko, O.Ye., Sudakov, A.K., Malanchuk, Z.R., Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34-43.

DOI: 10.29202/nvngu/2018-2/3

Google Scholar

[36] Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., & Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-10.

DOI: 10.29202/nvngu/2019-4/5

Google Scholar

[37] Sudakov, A., Dreus, A., Sudakova, D., & Khamininch, O. (2018). The study of melting process of the new plugging material at thermomechanical isolation technology of permeable horizons of mine opening. E3S Web of Conferences, 60, 00027. https://doi.org/10.1051/e3sconf/ 20186000027.

DOI: 10.1051/e3sconf/20186000027

Google Scholar

[38] Levenberh, V.D., Tkach M.R., Holstrem, V.A. (1991). Akkumulyrovanye tepla. Kyiv Tekhnyka.

Google Scholar

[39] Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197. https://doi.org/10.1016/j.acme.2018.01.012.

DOI: 10.1016/j.acme.2018.01.012

Google Scholar

[40] Pivnyak, H.H., et.al. (2012). Integrated generation and utilization of energy in terms of urban and industrial areas of Ukraine. Scientific report. Budget Programme of the Ministry of Education and Science of Ukraine, No. 0111U009111.

Google Scholar

[41] Tabachenko, M. (2016). Features of setting up a complex, combined and zero-waste gasifier plant. Mining of Mineral Deposits, 10(3), 37-45. http://dx.doi.org/10.15407/mining10.03.037.

DOI: 10.15407/mining10.03.037

Google Scholar

[42] Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.

DOI: 10.1201/b19901-6

Google Scholar

[43] Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221.

DOI: 10.4028/www.scientific.net/ssp.277.221

Google Scholar

[44] Nosić, A., Karasalihović Sedlar, D., & Jukić, L. (2017). Oil and gas futures and options market. Rudarsko Geolosko Naftni Zbornik, 32(4), 45–54. https://doi.org/10.17794/rgn.2017.4.5.

DOI: 10.17794/rgn.2017.4.5

Google Scholar

[45] Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions' sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 131-138.

DOI: 10.29202/nvngu

Google Scholar

[46] Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum 2007, 129-132. https://doi.org/10.1201/noe0415436700.ch16.

DOI: 10.1201/noe0415436700.ch16

Google Scholar