Characteristic of Possible Obtained Products during the well Underground Coal Gasification

Article Preview

Abstract:

This article is a summarizing of the results of the author's team on the establishment of technological parameters of underground gasification. It provides a justification of the final chemical and energy products that can be obtained as a result of complex physical and chemical transformations of coal. The thermodynamic processes of formation of the gasification source when changing the composition of the blast furnace mixture and the modes of its application to the georeactor are considered. Moreover, the change in the stress-strain state of rocks depending on the composition of the lateral rocks is taken into account. To better ensure the results are consistent with the well-known principles of thermodynamics and phase formation under the influence of the temperature field and the main chemical reactions occurring in complex gasification processes are presented. The main phase transitions in the georeactor are given for the maximum reception of different energy gases. Particular attention is given to the formation of an appropriate relationship between hydrogen and carbon monoxide, which form a synthesis gas. The Anderson-Schultz-Flory reaction is used to determine the maximum CO concentration in the outlet mixture. In general, the system for determining the material and thermal balance is proposed. These approaches were checked both for working out the coal reserves and for utilization of the mining waste products. Results of this investigation were included to the Roman Dychkovskyi thesis of the scientific degree of the Doctor of the Technique Sciences “Scientific Principles of Technologies Combination for Coal Mining in Weakly Metamorphoses Rockmass”. Also, this results were partially presented on international scientific and practical conferences “Forum of Miners” from different years. They contain the researches, which were conducted within the project GP – 489, financed by Ministry of Education and Science of Ukraine.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

52-62

Citation:

Online since:

May 2019

Export:

Price:

* - Corresponding Author

[1] Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14-17.

Google Scholar

[2] Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology. Article in press https://doi.org/10.1016/j.ijmst.2018.05.014.

DOI: 10.1016/j.ijmst.2018.05.014

Google Scholar

[3] Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum 2007, 129-132. https://doi.org/10.1201/noe0415436700.ch16.

DOI: 10.1201/noe0415436700.ch16

Google Scholar

[4] Kolokolov, O.V. (2000). Theory and practice of thermochemical technology of mining and processing of coal: monograph. Dnipro, NGU, 281.

Google Scholar

[5] Sobolev, V., Rudakov, D., Stefanovych, L., & Jach, K. (2017). Physical and mathematical modelling of the conditions of coal and gas outbursts. Mining of Mineral Deposits, 11(3), 40-49. https://doi.org/10.15407/mining11.03.040.

DOI: 10.15407/mining11.03.040

Google Scholar

[6] Zapletal, P., Koudelková, J., Zubíček, V., Kráľ, T., Mokrošová, A. (2018). A new method of gas drainage as a solution for dangerous phenomena in underground coal mines. Rudarsko Geolosko Naftni Zbornik, 33(1), 7-12. https://doi.org/10.17794/rgn.2018.1.2.

DOI: 10.17794/rgn.2018.1.2

Google Scholar

[7] Svitlytskyi, V., Ohorodnikov, P., & Kovalchuk, Yu. (2018). Use of the energy of parametric oscillations to improve drilling indices. Mining of Mineral Deposits, 12(3), 56-62. https://doi.org/10.15407/mining12.03.056.

DOI: 10.15407/mining12.03.056

Google Scholar

[8] Liu, S., Wang, Y., Yu, L., & Oakey, J. (2006). Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Processing Technology, 87(3), 209-215. https://doi.org/10.1016/j.fuproc.2005.07.006.

DOI: 10.1016/j.fuproc.2005.07.006

Google Scholar

[9] Dychkovskyi, R.O, (2013). Scientific principles of synthesis of technologies for the extraction of coal in weakly metamorphosed rocks. Dnipro, National Mining University.

Google Scholar

[10] Dychkоvskyі, R., Vladykо, О., Maltsеv, D., & Cabana, Е.C. (2018). Sоmе aspеcts оf thе cоmpatіbіlіty оf mіnеral mіnіng tеchnоlоgіеs. Rudarskо Gеоlоskо Naftnі Zbоrnіk, 33(4), 73-82. https://dоі.оrg/10.17794/rgn.2018.4.7.

Google Scholar

[11] Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi.org/10.15407/mining12.02.068.

DOI: 10.15407/mining12.02.068

Google Scholar

[12] Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Y.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197. https://doi.org/10.1016/j.acme.2018.01.012.

DOI: 10.1016/j.acme.2018.01.012

Google Scholar

[13] Rudakov, D.V., Sadovenko, I.A., Inkin, A.V., & Yakubovskaya, Z.N. (2012). Modeling of heat transport in an aquifer during accumulation and extraction of thermal energy. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 40-45.

DOI: 10.33271/nvngu/2022-1/005

Google Scholar

[14] Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409-1414. https://doi.org/10.1080/02329290290024925.

DOI: 10.1080/02329290290024925

Google Scholar

[15] Smol, M., Kulczycka, J., & Avdiushchenko, A. (2017). Circular economy indicators in relation to eco-innovation in European regions. Clean Technologies and Environmental Policy, 19(3), 669-678. https://doi.org/10.1007/s10098-016-1323-8.

DOI: 10.1007/s10098-016-1323-8

Google Scholar

[16] Caceres, E., & Alca, J.J. (2016). Potential For Energy Recovery From A Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7), 3316-3321. https://doi.org/10.1109/tla.2016.7587636.

DOI: 10.1109/tla.2016.7587636

Google Scholar

[17] Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35-40. https://doi.org/10.1201/b13157-7.

DOI: 10.1201/b13157-8

Google Scholar

[18] Rudakov, D.V., Ivanova, Ye.S. (2012). Estimation of fractured rock permeability around excavations from the viewpoint of rock mechanics. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 49-53.

DOI: 10.29202/nvngu

Google Scholar

[19] Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions' sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu (3), 131-138.

DOI: 10.29202/nvngu

Google Scholar

[20] Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.

DOI: 10.29202/nvngu

Google Scholar

[21] Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.

DOI: 10.29202/nvngu/2019-5/4

Google Scholar

[22] Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-28.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[23] Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19.

DOI: 10.1201/b11329-19

Google Scholar

[24] Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16-24. http://dx.doi.org/10.15407/mining10.01.016.

DOI: 10.15407/mining10.01.016

Google Scholar

[25] Dychkоvskyi, R.О. (2015). Fоrming thе bilayеr artificially shеll оf gеоrеactоr in undеrgrоund cоal gasificatiоn. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42.

DOI: 10.29202/nvngu

Google Scholar

[26] Dychkоvskyі, R.О. (2015). Dеtеrmіnatіоn оf thе rоck subsіdеncе spacіng іn thе wеll undеrgrоund cоal gasіfіcatіоn. Naukоvyі Vіsnyk Natsіоnalnоhо Hіrnychоhо Unіvеrsytеtu, (6), 30-36.

Google Scholar

[27] Falshtyns'kyy, V., Dychkovs'kyy, R., Lozyns'kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 125-132. https://doi.org/10.1201/b16354-23.

DOI: 10.1201/b16354-22

Google Scholar

[28] Falshtynskyi, V. (2012). New method for justification of the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining, 201-208. https://doi.org/10.1201/b13157-35.

DOI: 10.1201/b13157-36

Google Scholar

[29] Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16-24.

DOI: 10.15407/mining10.01.016

Google Scholar

[30] Lavrov, N.V. (1957). Physical and chemical bases of combustion and gasification of fuel. Moscow, Metallizdat, 40.

Google Scholar

[31] Vučenovi, H.Ć, Domitrović, D., & Kovačević-Zelić, B. (2017). Gas permeability of geosynthetic clay liners. Rudarsko Geolosko Naftni Zbornik, 32(1), 7-15. https://doi.org/10.17794/rgn.2017.1.2.

DOI: 10.17794/rgn.2017.1.2

Google Scholar

[32] Lozynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/ssp.277.66.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[33] Byk, S.I. (2000). Mineral components in the coal of the Lviv-Volyn Basin. Scientific Bulletin of National Mining University, (3), 29-30.

Google Scholar

[34] Savchuk, V.S. (2000). Influence of the real-petrographic composition of coals of the L'viv-Volyn Basin on the variability of the magnitude of the vitrinite reflection. Scientific Bulletin of National Mining University, (4). 41-42.

Google Scholar

[35] Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[36] Sobolev, V. V., & Usherenko, S. M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), (134), 977-982.

DOI: 10.1051/jp4:2006134149

Google Scholar

[37] Lipovich, V.G. (1988). Chemistry and coal processing. Moskow, Chemistry, 336.

Google Scholar

[38] Luo, J., Wang, L., Tang, F., He, Y., & Zheng, L. (2011). Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification. Mining Science and Technology, 21(5), 709-713.

DOI: 10.1016/j.mstc.2011.03.005

Google Scholar

[39] Pivnyak, G., Dychkovskyi, R, Bobyliov, O., Cabana, C.E., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/SSP.277.

DOI: 10.4028/www.scientific.net/ssp.277.1

Google Scholar

[40] Lebedev, N.N. (1988). Chemistry and technology of basic organic and petrochemical synthesis: textbook for high schools. Moskow, Chemistry, 592.

Google Scholar

[41] Xin, L., Wang, Z., Huang, W., Kang, G., Lu, X., Zhang, P., & Wang, J. (2014). Temperature field distributiоn оf burnt surrоunding rоck in UCG stоpe. Internatiоnal Jоurnal оf Mining Science and Technоlоgy, 24(4), 573-580.

DOI: 10.1016/j.ijmst.2014.06.001

Google Scholar

[42] Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar