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Abstract—The Mantaro River travels through Junín, 

Ayacucho, and Huancavelica departments,in Peru, and 

receives not only domestic discharges from the population but 

also tailings fields and dumps containing lead, silver, copper, 

and zinc from mining companies. To be able to assess the 

water quality, the grey clustering method was applied, using 

Center-point Triangular Whitenization Weight Functions 

(CTWF) for this purpose. As well, Pearson correlation 

between parameters was used to understand the dynamics of 

pollution. In the watershed of the Mantaro river the results of 

the Monitoring of the Surface Water published in 2018 by the 

Mantaro Water Administrative Authority were compared to 

the Peruvian Environmental Quality Standards (ECA) 

Category 1, subcategory A parameters. The results obtained 

suggest that the main driver of pollution in the Mantaro river 

is not mining, but domestic waste in landfills and probably 

agriculture. Finally, this study shows responsible 

environmental management by mining companies, besides, 

could be helpful for regional and local authorities of Peru in 

making decisions to improve the management of the Mantaro 

river watershed and make the population aware of the 

sustainable use of water. 

Keywords—Grey clustering, Pearson correlation, Water 

quality assessment. 

I. INTRODUCTION 

Water pollution is one of the main impacts of mining 

activity. The main sources are Acid Mine Drainage 

(AMD), heavy metal leaching, cyanidation among other 

chemical processes [1], [2]. For this reason, it is the cause 

of different social conflicts around the world and Peru is 

not the exception [3].  

The Mantaro river, also called Jatunmayo, belongs to the 

hydrographic system of the Atlantic Ocean slope, traveling 

around 725 km through Junín, Ayacucho, and Huancavelica 

departments. In the upper watershed, minerals such as lead, 

silver, copper, and zinc are exploited.  

 

 

Thus, the tributaries of the Mantaro river receive not only 

domestic discharges from the population but also tailings 

fields and dumps from mining companies such as Volcan, 

Brocal, Huarón, Morococha, and others. Failure to comply 

with current environmental regulations could have a 

negative impact on the physicochemical properties of the 

river watershed, causing harm to the inhabitants and damage 

to the aquatic ecosystem [4]. 

The length of the Mantaro river is 735 km. Its watershed 

includes the regions of Pasco, Junín, Huancavelica, and 

Ayacucho and occupies a total area of 34 546.51 km2 which 

is divided into Mantaro Superior (upper), Mantaro Medio 

(middle) and Mantaro Inferior (lower). 

The present investigation has the objective to provide an 

assessment of the quality of the surface water in the 

Mantaro river. Additionally, the study seeks to find 

relationships between water quality parameters and overall 

water quality to provide a better understanding of the 

dynamics behind pollution in the Mantaro river that can be 

applied to similar water systems impacted by different 

human activities. To fulfill these objectives, we will use the 

Grey Clustering method with Center-point Triangular 

Whitenization Weight Functions (CTWF) [5], [6] to 

evaluate water quality and Pearson Correlation to establish 

correlation between parameters. 

The structure of this investigation will be the following: 

the methodology will be explained in the section III, the 

case of study and the results are placed on the section IV 

and V, respectively. 

II. LITERATURE REVIEW 

A. Impact of mining activities in rivers 

Effimov et. al [7] show that mining activities are the 

main driver of pollution in Khibiny, Russia. The impact of 

the discharge of residual waters leads to the accumulation 

of sediments saturated with heavy metals at river mouths.  
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The chemical composition changes and the turbidity of 

the water along the rivers increases determined by the 

volume of wastewater discharged from the industrial site. 

Water purification helps reduce turbidity 100 times. 

Nevertheless, most of the suspended particles remain as the 

finer fractions. The existing treatment system is not 

sufficient to mitigate the polluting loads. Heavy metal 

concentrations gradually decrease because of the processes 

of “complexation” with organic matter and sedimentation 

of particles but continue to significantly exceed those of the 

base. About 50-60% of the chemical elements are 

transported in suspended sediments. Therefore, an effective 

monitoring system and the construction of additional 

sedimentation ponds with physico-chemical methods to 

reduce turbidity needs to be developed. 

B. Presence of heavy metals and metalloids in the 

Mantaro river watershed 

Custodio et. al [8] have evaluated the Mantaro river 

watershed’s content of heavy metals. The concentrations of 

Cu, Fe, Pb, Zn and As were determined by flame atomic 

absorption spectrophotometry to assess human risk. 

Likewise, the concentration of heavy metals and arsenic 

varies according to the sector of the rivers evaluated. The 

data found show a high concentration of Pb and As in the 

water, for which an urgent control and reduction of 

containment levels is required. The risk assessment for 

humans was performed by exposure to heavy metals with 

arsenic by ingestion and by the dermal route, strictly using 

standard methods (USEPA). In addition, the data obtained 

can be used to estimate cancer risk and formulate public 

health policies and programs. The high concentration of 

these metals reveals that the Mantaro River watershed is 

still a sink for mine waste. Multistatistical analysis showed 

that there is a significant correlation between Fe, Pb, and Zn 

and a poor one between the other metals. Hierarchal 

clustering analysis distinguished three main water groups 

according to their metal content: Cu, As and Fe-Pb-As. The 

study concludes that a management of mining toxic metal 

discharge is imperative. 

C. Using grey clustering to evaluate nitrogen water 

pollution 

Temino-Boes and colleagues [6] proposed a new method 

based on grey clustering which classifies monitoring sites 

according to their level of nitrogen pollution with few data 

using the entropy-weight method.  

 

The authors developed two indexes: the grey nitrogen 

management priority index (GNPM) and the Grey Land 

Use Pollution Index (GLUP) to determine the amount of 

nitrogen pollution based on the land use. The study applied 

this methodology in 8 estuaries of the Southern Gulf of 

Mexico and other near-coast ecosystems affected by the 

large amount of nitrogen pollution in the biome. 

D. Grey clustering on a highly contaminated river system 

The Rimac river watershed is one of the most important 

rivers in Lima, because it supplies drinking water for the 

population. However, since some years ago, this river has 

been affected by different economic activities. According to 

Delgado and colleagues [5], the following Rimac river 

affluents: Aruri River, Rimac River, Mayo River, Santa 

River, and Blanco River were classified as uncontaminated 

within the Prati scale; nevertheless, Blanco River was more 

vulnerable to be contaminated. The research work based 

their result on the center-point triangular whitenization 

weight functions (CTWF) method, considering parameters 

of water quality such as dissolved oxygen, biochemical and 

chemical oxygen demand, suspended solids, nitrates, and 

nitrites. 

E. Using correlation statistics on water quality 

Kothari and colleagues [9] conducted a study based on 

biological and hydrochemical parameters for the Water 

Quality Index calculation in six different districts of 

Uttarakhand, India. Among the used parameters there is pH, 

alkalinity, haze, metal content such as Fe, Na, Mg, As, 

sulfates, dissolved solids, and others. Also, likewise, some 

bacteriological parameters were used such as total content 

of coliforms and fecal coliforms that, in some cases, exceed 

the BIS standards. Correlation statistical analysis between 

WQI and other parameters shows up a linear relationship 

and a high effect of iron content, total coliform content and 

fecal coliforms over Water Quality. 

F. Correlation between water quality parameters in a 

mining zone 

A study focused on an area surrounding mining 

operation was conducted by Tiwari and colleagues [10] 

around Sukita Chromite Valley, in Odisha, India. The 

values measured in both superficial and groundwater were 

temperature, pH, dissolved oxygen, biochemical oxygen 

demand, total suspended solids, total dissolved solids, 

hardness, chloride, sulphate, alkalinity, sulphate, chromium 

(VI) and total chromium.  
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Significant correlations between both chromium 

parameters, sulphate and pH were found. Chromite content 

exceeded Indian environmental standards on many 

monitoring points and poor water quality related to mine 

waste was observed in points measured before treatment 

facilities. The content decreased with distance and achieved 

permissible concentrations in populated areas. 

III. METHODOLOGY 

A. Grey Clustering 

The methodology applied to assess the water quality of 

the Mantaro River was grey clustering as it is a common 

and useful method for evaluating multiple environmental 

and non-environmental aspects [6], [11]. Prior to the 

calculations there must be a defined amount of “m” study 

objects (i=1,2,… m),“n” criteria (j=1,2,…n), and “s” grey 

classes (k=1,2,… s). These are the following steps to 

calculate classification values for each monitoring point 

[12] 

Step 1: Central point determination  

For each class there is a standard corresponding to each 

criterion represented in a matrix by the value λjk, known as 

the central point. Each λjk is taken from the normative, 

whether it is the average of the end members of an interval 

or the maximum value. 

Step 2: Adimensioning 

The adimensioned value for each criterion is determined 

to enable comparison between criteria with different 

measure units with (1), where A represents the 

adimensioned value and D the original one. This operation 

is made to each value from the standards (λjk) and dataset 

(xij) matrixes. 

                               ∑
   

 

 
   (1) 

Step 3: Triangular functions (CTWF) 

Equations (2) – (4) represent the way to determine the 

triangular function for the values of the grey classes, where 

    is the adimensioned value from the study objects. 
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Step 4: Determination of the weight for each criterion 

In this study the harmonic mean will be used, so an 

objective weight for each criterion could be determined. The 

weight     is determined through (5). 
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Step 5: Determination of the clustering coefficient 

The clustering coefficients     are obtained applying (6). 

                             
  ∑   

         
  

             (6) 

Step 6: Results using the max. clustering coefficient 

The highest     within each study object determines the 

class to which they correspond and allows for comparison 

within each class 

B. Pearson Correlation Test 

Additional to the grey clustering, the r-Pearson linear 

correlation coefficient between each parameter and overall 

water quality index, determined by the clustering 

coefficient belonging to the first grey class, was obtained to 

achieve a better understanding of the dynamics behind 

water pollution and establishing predictive relationships. 

Though specific correlation significance intervals are 

mostly subjective and depend on the size of the data and 

the science branch where it is applied, in this study the 

intervals were the ones used by [13] where a strong 

absolute correlation is higher than 0.76; a moderate 

correlation is higher than 0.51, a weak correlation is higher 

than 0.26 and below that point correlation can be neglected. 

IV. CASE OF STUDY 

A. Definition of Study Objects 

For the assessment of the quality of the waters of the 

Mantaro river watershed, information was collected from 25 

monitoring points. The values were obtained from the 

“Result of the Participatory Monitoring of Surface Water 

Quality in the Scope of the Mantaro River Watershed” 

published in 2018 by the Mantaro Water Administrative 

Authority, including the Water Local Authorities from 

Pasco, Mantaro, Huancavelica and Ayacucho, which are 

decentralized agencies of the National Water Authority [14].  
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The monitoring points were placed in strategic sites like 

connections with tributaries, dumps, cities, or hydroelectric 

plants, both before and after. 

The sampling points considered are detailed in Table I 

and located on a map (shown in Fig. 1) next to operating 

and closed mines. 

Table1 

Monitoring points 

Name 
Coordinates 

Description 
X Y 

RMant1 360371 8790460 Downstream of Upamayo dam 

RMant2 371425 8757001 
After intersection with Coricancha 

river 

RMant3 396794 8730179 After Paccha-La Oroya population 

RMant4 399587 8726799 
Before STRAKRAFF hidroelectric 

discharge 

RMant5 400536 8726799 
After STRAKRAFF hidroelectric 

discharge 

RMant6 401694 8726179 Before Doe Run refinery 

RMant7 402348 8724653 After Doe Run refinery 

RMant8 411333 8712609 Before Huari river 

RMant9 412036 8712352 After Huari river 

RMant10 422743 8699253 Before Pachacayo river 

RMant11 422831 8698467 After Pachacayo river 

RMant12 446138 8694663 
Upstream of CIMIRM and Plan 

MERISS 

RMant13 464563 8680918 Before Achamayo river 

RMant14 473270 8668692 Before Pilcomayo dump 

RMant15 473267 8668256 
After Pilcomayo dump and before El 

Tambo "Mejorada" dump 

RMant16 473874 8667464 Downstream of Breña bridge 

RMant17 474284 8665745 
Downstreamof “Agua de las vírgenes” 

dump 

RMant18 474450 8665373 Downstream of Shullcas river 

RMant19 473680 8654812 Huancayo exit 

RMant21 508134 8614519 Downstream of “Mejorada” 

RMant22 544540 8597918 
Downstream of Anco residual waters 

treatment facility 

RMant23 569148 8607566 
Downstream of San Pedro de Coris 

(ex Cobriza) 

RMant24 486704 8631353 Near Vilca river 

RMant28 388551 8736962 Before arsenic trioxide deposit 

RMant29 389261 8737309 After arsenic trioxide deposit 

 
Fig. 1. Map of the sampling points and mining projects of the 

Mantaro River watershed. 

B. Definition of Assessment Criteria 

The assessment criteria used on this study belong to the 

Peruvian water quality standards ECA. The Peruvian 

National Water Authority (ANA) classifies the Mantaro 

river in category 3, which means its waters are destined to 

vegetable irrigation and livestock drink [15] and the 

parameters measured in the monitoring points belong to this 

category. However, as this classification has only two 

possible grey classes, the monitoring points were evaluated 

according to the subcategory A from category 1 (Table II), 

that evaluates the required treatment to provide drinking 

water to the public.  Therefore, only the parameters in 

common for both categories were considered. Also, 

parameters with lacking requirements for some classes were 

not evaluated. 
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TABLE 2 

WATER QUALITY CRITERIA FROM ECA CATEGORY 1, SUBCATEGORY A 

Criterion Units Notation 

Oils and fats mg/L C1 

Dissolved oxygen mg/L C2 

pH 0-14 C3 

Thermotolerant coliforms NMP/100 mL C4 

Chemical oxygen demand mg/L C5 

Biochemical oxygen demand mg/L C6 

Nitrates mg NO3-N/L C7 

Chlorides mg/L C8 

Aluminum mg/L C9 

Arsenic mg/L C10 

Beryllium mg/L C11 

Boron mg/L C12 

Cadmium mg/L C13 

Copper mg/L C14 

Chromium mg/L C15 

Iron mg/L C16 

Mercury mg/L C17 

Manganese mg/L C18 

Lead mg/L C19 

Zinc mg/L C20 

Selenium mg/L C21 

C. Definition of Grey Classes 

The subcategory A defines three different classes 

according to the purification methods required: A1 

(disinfection), A2 (conventional treatment), A3 (advanced 

treatment) [15]. The maximum standard values, minimum 

(for dissolved oxygen) and ranges (for pH) are shown in 

Table III. 

TABLE 3 

WATER QUALITY REQUIREMENTS FROM ECA  

Criterion A1 A2 A3 

C1 0,5 1,7 1,7 

C2 6 5 4 

C3 6,5 - 8,5 5,5 - 9,0 5,5 - 9,0 

C4 20 2000 20000 

C5 10 20 30 

C6 3 5 10 

C7 50 50 50 

C8 250 250 250 

C9 0,9 5 5 

C10 0,01 0,01 0,15 

C11 0,012 0,04 0,1 

C12 2,4 2,4 2,4 

C13 0,003 0,005 0,01 

C14 2 2 2 

C15 0,05 0,05 0,05 

C16 0,3 1 5 

C17 0,001 0,002 0,002 

C18 0,4 0,4 0,5 

C19 0,01 0,05 0,05 

C20 3 5 5 

C21 0,04 0,04 0,05 

D. Calculations using Grey Clustering 

Step 1: Central point determination 

The first step was to build a new water quality 

classification out of subcategory 1-A with a unique value 

for each class and criterion. For pH, the maximum was 

chosen due to the alkalinity of the Mantaro River. When 

two classes in a criterion have the same values, the A2 

central point was obtained as the arithmetic average 

between the extreme conditions. For criteria with three 

equal values, the minimum or maximum (depending on the 

case) were obtained from ECA category 3 for vegetable 

irrigation and A2 was the average of both categories. The 

standards used are shown in Table IV. Data with (*) are the 

mean of both extremes, data with (**) belong to category 3. 

TABLE 4 

ECA WATER QUALITY CENTRAL POINTS 

Criterion A1 (λ1) A2 (λ2) A3 (λ3) 

C1 0,5 1,1* 1,7 

C2 6 5 4 

C3 8,5 8,75* 9,0 

C4 20 2000 20000 

C5 10 20 30 

C6 3 5 10 

C7 50 70* 90** 

C8 250 375* 500** 

C9 0,9 2,95* 5 

C10 0,01 0,08* 0,15 

C11 0,012 0,04 0,1 

C12 1** 1,7* 2,4 

C13 0,003 0,005 0,01 

C14 0,2** 1,1* 2 

C15 0,05** 0,075* 0,1 

C16 0,3 1 5 

C17 0,001 0,0015 0,002 

C18 0,4 0,45 0,5 

C19 0,01 0,03* 0,05 

C20 3 4 5 

C21 0,04 0,045* 0,05 

Step 2:Adimensioning 

The non-dimensioned standard values for each parameter 

were determined through (1). These values are presented in 

Table V. 
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TABLE 5 

NON-DIMENSIONAL STANDARD VALUES FROM ECA 

Criterion A1 (λ1) A2 (λ2) A3 (λ3) 

C1 0,4545 1 1,545 

C2 0,8 1 1,2 

C3 0,9714 1 1,0286 

C4 0,0027 0,2725 2,7248 

C5 0,5 1 1,5 

C6 0,5 0,8333 1,6667 

C7 0,7143 1 1,2857 

C8 0,6667 1 1,3333 

C9 0,30508 1 1,6949 

C10 0,125 1 1,875 

C11 0,2368 0,7895 1,9737 

C12 0,5882 1 1,4118 

C13 0,5 0,8333 1,6667 

C14 0,1818 1 1,8182 

C15 0,6667 1 1,3333 

C16 0,1429 0,4762 2,3810 

C17 0,6667 1 1,3333 

C18 0,8889 1 1,1111 

C19 0,3333 1 1,6667 

C20 0,75 1 1,25 

C21 0,8889 1 1,1111 

Similarly, the adimensioned results from monitoring 

points are presented in Table VI, using the first seven 

criteria as an example. Points RMant21 to RMant24 lacked 

information about chloride content and COD. 

TABLE 6 

NON-DIMENSIONED MONITORING DATA IN THE CASE STUDY 

Points C1 C2 C3 C4 C5 C6 C7 

RMant1 0,4545 1,294 0,9829 0,0015 0,95 0,3333 0,0011 

RMant2 0,4545 1,35 0,9863 0,0108 1,05 0,1667 0,0017 

RMant3 0,4545 1,46 0,9714 0,6267 0,65 0,1667 0,0018 

RMant4 0,4545 1,436 0,9714 0,1076 0,45 0,1667 0,0019 

RMant5 0,4545 1,44 0,9714 0,1771 0,05 0,1667 0,0025 

RMant6 0,4545 1,434 0,9829 0,3270 0,5 0,1667 0,0026 

RMant7 0,4545 1,42 0,9829 0,3270 0,05 0,1667 0,0028 

RMant8 0,4545 1,44 0,9943 0,0067 0,05 0,1667 0,0030 

RMant9 0,4545 1,42 0,9943 0,0450 0,45 0,1667 0,0034 

RMant10 0,4545 1,43 0,9829 0,6267 0,2 0,1667 0,0032 

RMant11 0,4545 1,42 0,9943 0,0450 0,05 0,1667 0,0015 

RMant12 0,4545 1,42 0,96 0,1499 0,05 0,1667 0,0033 

RMant13 0,4545 1,436 0,9714 0,1076 0,25 0,1667 0,0046 

RMant14 0,4545 1,436 0,9714 9,5367 0,35 0,1667 0,0086 

RMant15 0,4545 1,44 0,9703 0,3815 0,35 0,1667 0,0078 

RMant16 0,4545 1,436 0,9943 0,9537 0,05 0,1667 0,0069 

RMant17 0,4545 1,438 0,9943 0,4768 0,9 0,3333 0,0044 

RMant18 0,4545 1,446 0,9714 1,4986 2,35 1,8333 0,0033 

RMant19 0,4545 1,45 0,9714 3,8147 0,5 0,5000 0,0054 

RMant21 0,4545 0,86 0,9943 0,4768 - 0,1667 0,0088 

RMant22 0,4545 1,08 1,0171 0,0232 - 0,3333 0,0059 

RMant23 0,4545 1,18 1,0171 0,1907 - 0,3333 0,0064 

RMant24 0,4545 0,872 0,9966 0,6267 - 0,3333 0,0055 

RMant28 0,4545 1,436 0,9486 0,0300 0,85 0,3333 0,0016 

RMant29 0,4545 1,442 0,96 0,0015 0,05 0,3333 0,0015 

Step 3:Triangular functions (CTWF) 

Replacing the adimensioned monitoring data in (2) – (4), 

the triangular whitening functions were obtained for the 

three Grey classes for each parameter.  

An example, corresponding to the first parameter (C1), is 

shown in (7) – (9) and Fig. 2. Functions were inverted for 

dissolved oxygen since this parameter is defined by 

minimum values. 
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Fig. 2. CTWF for the first parameter. 

An example showing the results obtained for the first five 

monitoring points in the first seven criteria is in Table VII. 

TABLE 7 

VALUES OF CTWF OF FIRST FIVE MONITORING POINT 

Point Triangular f. C1 C2 C3 C4 C5 
C

6 

C

7 

RMant1 

f1 1 1 0,6 1 0,1 1 1 

f2 0 0 0,4 0 0,9 0 0 

f3 0 0 0 0 0 0 0 

RMant2 

f1 1 1 0,48 0,9702 0 1 1 

f2 0 0 0,52 0,0298 0,9 0 0 

f3 0 0 0 0 0,1 0 0 

RMant3 

f1 1 1 1 0 0,7 1 1 

f2 0 0 0 0,8556 0,3 0 0 

f3 0 0 0 0,1444 0 0 0 

RMant4 

f1 1 1 1 0,6111 1 1 1 

f2 0 0 0 0,3889 0 0 0 

f3 0 0 0 0 0 0 0 

RMant5 

f1 1 1 1 0,3535 1 1 1 

f2 0 0 0 0,6465 0 0 0 

f3 0 0 0 0 0 0 0 

Step 4: Determination of the weight for each criterion 

The target weights were calculated using the harmonic 

media method described earlier. The results are shown in 

Table VIII. Monitoring points RMant21 to RMant24 had 

separated analysis without criteria C5 and C8 due to lack of 

monitoring data. 
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TABLE 8 

CLUSTERING WEIGHT FOR PARAMETERS 

Criterion A1 (λ1) A2 (λ2) A3 (λ3) 

C1 0,0052 0,0393 0,0442 

C2 0,0020 0,0393 0,0854 

C3 0,0025 0,0393 0,0664 

C4 0,8754 0,1443 0,0251 

C5 0,0048 0,0393 0,0455 

C6 0,0048 0,0472 0,0410 

C7 0,0033 0,0393 0,0531 

C8 0,0036 0,0393 0,0512 

C9 0,0078 0,0393 0,0403 

C10 0,0191 0,0393 0,0364 

C11 0,0101 0,0498 0,0346 

C12 0,0041 0,0393 0,0484 

C13 0,0048 0,0472 0,0410 

C14 0,0131 0,0393 0,0376 

C15 0,0036 0,0393 0,0512 

C16 0,0167 0,0826 0,0287 

C17 0,0036 0,0393 0,0512 

C18 0,0027 0,0393 0,0615 

C19 0,0072 0,0393 0,0410 

C20 0,0032 0,0393 0,0546 

C21 0,0027 0,0393 0,0615 

Step 5: Determination of the clustering coefficient 

Total clustering coefficients for each grey class are 

shown in Table IX. 

TABLE 9 

CLUSTERING WEIGHT FOR MONITORING POINTS 

Point λ1 λ2 λ3 

RMant1 0,98183 0,11683 0 

RMant2 0,94320 0,16292 0,02352 

RMant3 0,12205 0,13759 0,00362 

RMant4 0,65782 0,05973 0 

RMant5 0,43274 0,09607 0 

RMant6 0,12290 0,15832 0,00056 

RMant7 0,12003 0,15870 0,06203 

RMant8 0,98243 0,06322 0 

RMant9 0,86003 0,05599 0 

RMant10 0,10683 0,22238 0,00362 

RMant11 0,83935 0,15803 0,00082 

RMant12 0,51711 0,10378 0 

RMant13 0,64770 0,11330 0 

RMant14 0,11717 0,03703 0,02507 

RMant15 0,11794 0,17001 0,00111 

RMant16 0,12221 0,13658 0,00696 

RMant17 0,11506 0,20700 0,00209 

RMant18 0,11108 0,01718 0,11160 

RMant19 0,11787 0,02699 0,02507 

RMant21 0,11232 0,19256 0,06849 

RMant22 0,92936 0,05473 0,04412 

RMant23 0,37866 0,13805 0,04412 

RMant24 0,11229 0,75891 0,12879 

RMant28 0,99935 0,00424 0 

RMant29 0,99945 0,00112 0 

Step 6: Results using the max. clustering coefficient 

The water quality class for each parameter, according to 

the maximum clustering coefficient, are shown in the Table 

X along with the coefficient to enable comparison within 

each class. 

TABLE 10 

RESULTS WITH MAX. CLUSTERING COEFFICIENT 

Point σ max Class 

RMant1 0,98183 A1 

RMant2 0,94329 A1 

RMant3 0,13759 A2 

RMant4 0,65782 A1 

RMant5 0,43274 A1 

RMant6 0,15832 A2 

RMant7 0,15870 A2 

RMant8 0,98243 A1 

RMant9 0,86003 A1 

RMant10 0,22238 A2 

RMant11 0,83935 A1 

RMant12 0,51711 A1 

RMant13 0,64770 A1 

RMant14 0,11717 A1 

RMant15 0,17001 A2 

RMant16 0,13658 A2 

RMant17 0,20700 A2 

RMant18 0,11160 A3 

RMant19 0,11787 A1 

RMant21 0,19256 A2 

RMant22 0,92936 A1 

RMant23 0,37866 A1 

RMant24 0,18859 A2 

RMant28 0,99578 A1 

RMant29 0,99945 A1 

E. Pearson Correlation Test 

The r-Pearson correlation matrix is shown in Table XI. 

Parameters that fell below the detection limits showed no 

correlation, therefore they were excluded from the matrix. 

Strong positive correlations can be found between DBO, 

DQO and total coliforms, and between nitrates and 

chlorides. Within metallic components, there is a 

remarkably high correlation system between cadmium, 

copper, iron, lead, and zinc with correlation values varying 

from moderate to strong. When comparing the correlation of 

parameters with the A1 clustering coefficient, there is no 

relevant negative nor positive correlation with any metal 

content, except for As, which showed a weak to moderate 

negative correlation. The criteria with a significant negative 

correlation with water quality in the Mantaro River are 

successively: chlorides, nitrates, arsenic, and total coliforms, 

characterized by a moderate to weak negative correlation.  
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Interestingly, while total coliforms and As where the 

parameters that exceeded the A1 standard the most, both 

chloride and nitrates values fell within the first triangular 

function for all monitoring points (except the ones where 

chloride content was not evaluated). 

TABLE 11 

PEARSON CORRELATION MATRIX 
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V. RESULTS AND DISCUSSION 

A. About the Case Study 

The maximum clustering coefficient not only gives 

information on the water quality class each point belongs to, 

but also determines quality levels within each class [5], [6]. 

The total ranking of monitoring points is shown in Table 

XII, where darker colors represent higher water quality. 

Objects with the description marked by an asterisk represent 

points of the river with influence of mining activities. 

Additionally, a representation of water quality along the 

Mantaro River is shown in Fig. 3, where the monitoring 

points were ordered according to their position, being 

RMant1 the most upstream monitoring point and RMant23 

the most downstream. 

TABLE 12 

RANKING OF MONITORING POINTS 

Point σ max Class Description 

RMant29 0.99945 A1 After arsenic trioxide deposit * 

RMant28 0.99578 A1 Before arsenic trioxide deposit * 

RMant8 0.98243 A1 Before Huari river 

RMant1 0.98183 A1 Downstream of Upamayo dam 

RMant2 0.9432 A1 After intersection with Coricancha river * 

RMant22 0.92936 A1 Downstream of Anco residual waters treatment facility 

RMant9 0.86003 A1 After Huari river 

RMant11 0.83935 A1 After Pachacayo river 

RMant4 0.65782 A1 Before STRAKRAFF hidroelectric discharge 

RMant13 0.6477 A1 Before Achamayo river 

RMant12 0.51711 A1 Upstream of CIMIR and Plan Meris 

RMant5 0.43274 A1 After STRAKRAFF hidroelectric discharge 

RMant23 0.37866 A1 Downstream of San Pedro de Coris (ex Cobriza) * 

RMant19 0.11787 A1 Huancayo exit 

RMant14 0.11717 A1 Before Pilcomayo dump 

RMant10 0.22238 A2 Before Pachacayo river 

RMant17 0.207 A2 Downstreamof “Agua de las vírgenes” dump 

RMant21 0.19256 A2 Downstream of “Mejorada” 

RMant24 0.18859 A2 Near Vilca river 

RMant15 0.17001 A2 After Pilcomayo dump and before "Mejorada" dump 

RMant7 0.1587 A2 After Doe Run refinery * 

RMant6 0.15832 A2 Before Doe Run refinery * 

RMant3 0.13759 A2 After Paccha-La Oroya population 

RMant16 0.13658 A2 Downstream of Breña bridge 

RMant18 0.1116 A3 Downstream of Shullcas river 

 
Fig. 3. Maximum clustering coefficient of monitoring points in 

downstream order. 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022) 

27 

Points RMant28 and RMant29 are located before and 

after the arsenic trioxide deposit of Malpaso, supervised by 

the federal company “Activos Mineros S.A.C.” [16], 

meanwhile RMant2 is located next to limestone mine Las 

Monas. Points RMant6 and RMant7 are the mining related 

points with the lowest water quality, however, both points 

are located next to the city of Yauli as well. Due to the low 

water quality exhibited by points next to populated areas 

like Pacha-La Oroya (RMant3) and Huancayo (RMant19), a 

direct relationship between the low water quality next to the 

Doe Run refinery and its operations cannot be assured. 

Points from RMant14 to RMant21 make a segment of very 

low water quality as can be seen in Fig. 3. This section is 

characterized by multiple dumps like Agua de las Virgenes 

and Mejorada. Point RMant23, located downstream of 

Cobriza exhibits a low water quality but still in the A1 class, 

this is the only point where a connection between mining 

activities and lower water quality can be made. 

Point RMant18, located after the intersection with 

Shullcas river showed the lowest water quality in the whole 

river. The pollution can be directly associated to the dump 

El Eden which is in the intersection between both rivers 

[16]. The Peruvian Environmental Evaluation and 

Inspection Organism (OEFA) reported the Huancayo and El 

Tambo municipalities due to the poor management of solid 

residuals in 2014 [16]. The district started closing 

operations in 2015 [17]. As the data collected is from 2018, 

clearly the dump continued to negatively impact the water 

quality of the river. 

According to the Pearson correlation analysis, there is no 

significant effect of metal content on water quality or any 

other parameter different from metallic content except for 

weak positive and negative correlations with chemical 

oxygen demand and boron, respectively. A high correlation 

between characteristic heavy metals of polymetallic mines 

such as Cu, Cd, Fe, Pb and Zn suggests there is a metal 

input from mining in the Mantaro River as determined by 

Custodio et. al [13]. Arsenic is a common waste from 

mining activities [18] and is the third criteria with the 

highest negative impact on water quality. However, there 

are no significant correlations between As and heavy metals 

nor any other criteria except for a moderate correlation with 

B. Arsenic can be released as a component of pesticides 

[19] thus its presence could be more related to agriculture. 

Chlorides and nitrates content are strongly correlated and 

have the highest correlation with low water quality.  

 

 

 

Nitrates main anthropogenic sources in water systems are 

agriculture and domestic waste [20], [21], hence chloride 

content is most likely anthropogenic as well and caused by 

the same sources. The fourth criteria with the highest 

negative correlation with water quality was thermotolerant 

coliforms, whose main source is feces from humans and 

livestock. Due to the large variation of coliform content in 

water and the difference between each class’s standard, 

thermotolerant coliforms was the criteria with the highest 

clustering weight, making up to 87% of the weight for A1 

and 14% in A2, thus showing a problem with using 

harmonic mean as a weighting function when the criteria 

standards show a logarithmic distribution. More robust 

weighting functions like Shannon entropy [22] could be 

applied to diminish the effect. 

B. About the Methodology 

Both the Grey Clustering method and the r-Pearson linear 

correlation coefficient complement each other. The first is 

effective insofar as it is a question of data management with 

uncertainty, where the determination of the object of study, 

criteria, and classes, is adjusted to the case of evaluating the 

water quality of a watershed. However, it is necessary to 

make certain modifications to the evaluation parameters or 

national environmental standards to carry out this method 

correctly. The second method mentioned is suitable to 

measure the degree of relationship between criteria and 

water quality, where correlation results are obtained to 

complement what is obtained with the Grey Clustering 

method. These methods have multiple applications in 

various scenarios, and are quite advantageous over other 

methods, since it only requires real data, quality standards, 

and knowledge. In addition, it is a relief in terms of research 

and study costs since it is not necessary to consult experts 

such as the Delphi method and others. 

Likewise, from the analysis of the literature review, the 

following can be said: 

In a mining impacted water system high content of heavy 

metals linked to poor water quality are expected to be found 

[7], [23]. Custodio et. al [8] have reported high 

concentrations of heavy metals in the Mantaro River 

directly related to mine waste, showing that the river is still 

affected by mining operations. However, this paper only 

focused on heavy metals, and thus does not assess the 

overall water quality of the Mantaro River, or if these 

metals are indeed the driving force behind pollution.  
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Kothari et. al [9] found that microbial contamination 

caused by domestic waste in poor water management 

facilities was the main driver behind water pollution in six 

districts of India. A similar situation happens in the Mantaro 

watershed, because agriculture is the main economic 

activity (54.6% of occupations), 55.5% of the population in 

the region live in poverty conditions and a high percentage 

of population lacks sewerage services [4]. 

VI. CONCLUSIONS 

The results obtained from grey clustering show that water 

quality is highly compromised in the Mantaro River. The 

points that exhibit the lowest water quality are located next 

to municipal dumps and populated areas. According to the 

harmonic mean weighting function applied, thermotolerant 

coliforms is the most important criteria. Pearson correlation 

between the parameters and maximum clusterization weight 

for the first grey class concludes that parameters related 

with domestic and agricultural waste had the highest 

correlation with low water quality. Together, both 

approximations suggest that the main driver behind 

pollution in the Mantaro River is not mining, but domestic 

waste in dumps and probably agriculture. There is a strong 

correlation between different heavy metals suggesting 

mining input but a poor to irrelevant correlation with water 

quality. This aspect, as well as the divergence of water 

quality maximum clustering coefficients in mining related 

points, show that the impact of mining on water quality is 

close to irrelevant. Future studies should focus on the 

influence of domestic waste and poor sanitary conditions in 

the region rather than mining activities to effectively 

characterize the pollution and develop treatment projects. 

The methods used (Grey Clustering and Pearson's 

correlation) are effective to carry out a study on water 

quality, since uncertainty is considered, and national 

parameters (ECA) can be adjusted by adding certain 

international standards to improve the accuracy of the 

results. The study carried out does not present significant 

costs, and it is quite accurate, so its use is recommended to 

national authorities so they can implement improvements in 

monitoring and treatment in different watersheds. Likewise, 

for future studies, it is recommended to expand the 

methodology using quality standards from neighboring 

countries or different weighting algorithms in order to 

compare the results with the present study. 
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