Edaphic macrofauna and soil physicochemical properties, in smallholder coffee farms

  • Eli Morales Rojas Investigador del instituto de investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, calle Higos Urco N° 342-350-356 – Calle Universitaria N° 304 https://orcid.org/0000-0002-8623-3192
  • Segundo Chávez Quintana Investigador del instituto de investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, calle Higos Urco N° 342-350-356 – Calle Universitaria N° 304 https://orcid.org/0000-0002-0946-3445
  • Elder Chichipe Vela Investigador del instituto de investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, calle Higos Urco N° 342-350-356 – Calle Universitaria N° 304 https://orcid.org/0000-0002-2972-7241
  • Manuel Oliva Investigador del instituto de investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, calle Higos Urco N° 342-350-356 – Calle Universitaria N° 304 https://orcid.org/0000-0002-9670-0970
  • Lenin Quiñones Huatangari Investigador del instituto de Ciencia de Datos, Universidad Nacional de Jaén, Jaén 06801, Perú. https://orcid.org/0000-0002-0953-328X
Keywords: Coffea arabica, organic matter, ants, Lumbricus spp., diversity

Abstract

Edaphic macrofauna is a biological soil indicator that is rarely applied in the identification of soil quality in coffee farms. The objective was to evaluate edaphic macrofauna and soil physico-chemical properties in four coffee farms at different altitudes. The farms were selected in four hamlets of small-scale coffee farmers. In one-hectare plantations, three monoliths of 25 × 25 cm wide by 30 cm depth were sampled. Soil samples were taken from each plot, then the organic matter (OM) content, hydrogen potential (pH), electrical conductivity (EC) and nitrogen (N) content were determined. There were no differences in macrofaunal diversity for the altitudes studied, but there were differences according to the time of year (rainfall and low water). The maximum Shannon index was 2.2 (rainy season) and 1.1 (dry season). Physico-chemical parameters such as soil pH ranged from 7.8 - 8.15 in the lower altitude farms and for the higher altitude farms it was 6.38 - 6.65. Soil pH was highly negatively correlated with altitude. Nitrogen was positively correlated with organic matter. Faunal diversity is negatively correlated with season and the presence of microorganisms is influenced by the physico-chemical characteristics of the soil.

Downloads

Download data is not yet available.

References

Ancca, J., J. Pinto, S. Vega, A. Cáceres and C. Náquira. 2008. Características morfométricas, genéticas, alimenticias y vectoriales de Panstrongylus herreri procedentes de Jaén (Cajamarca) y Cajaruro Amazonas), Perú. Rev. peru. med. exp. salud pública, 25(1): 17–25. https://cutt.ly/Qnk6vH9
Baretta, D., A. D. Brescovit, I. Knysak and E. J. B. N. Cardoso. 2007. Trap and soil monolith sampled edaphic spiders (Arachnida: Araneae) in Araucaria angustifolia forest. Sci. Agríc. (Online), 64(4): 375–383. https://cutt.ly/onk6mYC
Bignell, D. E. 2009. Towards a universal sampling protocol for soil biotas in the humid tropics. Pesqui. Agropecu. Bras. (Online), 44(8): 825–834. https://cutt.ly/tnk6Ej4
Cabrera Dávila, G. D. L. C., y G. M. L. Iborra. 2018. Ecological characterization of soil macrofauna in two evergreen forest sites at el salón, sierra del rosario, Cuba. Bosque, 39(3): 363–373. https://cutt.ly/Bnk6ARG
Calderón-Medina, C. L., G. P. Bautista-Mantilla y S. Rojas-González, 2018. Propiedades químicas, físicas y biológicas del suelo, indicadores del estado de diferentes ecosistemas en una terraza alta del departamento del Meta. Orinoquia, 22(2): 141–157. https://cutt.ly/Znk6FoI
Calderon, R. A. and R. Constantino. 2007. Systematics , morphology and physiology - A Survey of the Termite Fauna (Isoptera) of an Eucalypt Plantation in Central Brazil. Neotrop. Entomol., 36(3)(June): 391–395. https://cutt.ly/6nk6Hxf
De Souza, S. T., P. C. Cassol, D. Baretta, M. L. C. Bartz, O. Klauberg Filho, Á. L. Mafra, and M. G. Da Rosa. 2016. Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Rev. Bras. Ciênc. Solo (Online), 40: 1–14. https://cutt.ly/Rnk6KYV
dos Santos, J. B., A. C. Ramos, R. Azevedo Júnior, L. C. I. de Oliveira Filho, D. Baretta, e E. J. B. N.Cardoso. 2018. Soil macrofauna in organic and conventional coffee plantations in Brazil. Biota Neotrop., 18(2). https://cutt.ly/lnk6Xtt
Estrada-Herrera, I. R., C. Hidalgo-Moreno, R. Guzmán-Plazola, J. J. Almaraz Suárez, H. Navarro-Garza, and J. D. Etchevers-Barra. 2017. Soil quality indicators to evaluate soil fertility. Agrociencia, 51(8), 813–831. https://cutt.ly/Pnk6VTn
FAO. (2016). Estado mundial del recurso del suelo (EMRS) - Resumen Tecnico. In Fao. https://cutt.ly/cnk60xH
Ferreras, L., S. Toresani, B. Bonel, E. Fernández, S. Bacigaluppo, V. Faggioli y C. Beltrán. 2009. Parámetros químicos y biológicos como indicadores de calidad del suelo en diferentes manejos. Cienc. suelo (En línea), 27(1): 103–114. https://cutt.ly/Hnk6345
Grisel, y Cabrera-Dávila. 2014. Manual práctico como indicador biológico de la calidad del suelo. Fundación Rufford (RSGF, para la Conservación de la Naturaleza). https://cutt.ly/3nlqhiD
Ingram, J. S. I. 2018. Colorimetric determination of nitrogen and phosphorous tropical soil biology and fertility. In: Tropical Soil Biology and Fertility a Handbooks and Metods (Issue January 1993). Second Edition. https://www.researchgate.net/publication/284229117
Jiang, M., X. Wang, Y. Liusui, X. Sun, C. Zhao, and H. Liu. 2015. Diversity and abundance of soil animals as influenced by long-term fertilization in grey desert soil, China. Sustainability (Switzerland), 7(8): 10837–10853. https://cutt.ly/SnlqnaK
Kamau, S., E. Barrios, N. K. Karanja, F. O. Ayuke and J. Lehmann. 2017. Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biology and Biochemistry, 112: 35–46. https://cutt.ly/InlqQhq
Karungi, J., S. Cherukut, A. R. Ijala, J. B. Tumuhairwe, J. Bonabana-Wabbi, E. A. Nuppenau, M. Hoeher, S. Domptail and A. Otte. 2018. Elevation and cropping system as drivers of microclimate and abundance of soil macrofauna in coffee farmlands in mountainous ecologies. Appl Soil Ecol, 132(August): 126–134. https://cutt.ly/4nlqE0B
Lammel, D. R., L. C. B. Azevedo, A. M. Paula, R. D.Armas, D. Baretta, and E. J. B. N. Cardoso. 2015. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil. Braz. J. Biol. (Online), 75(4): 894–905. https://cutt.ly/DnlqYO4
Li, F., P. Qiu, B. Shen and Q.Shen 2019. Soil aggregate size modifies the impacts of fertilization on microbial communities. Geoderma, 343(January): 205–214. https://cutt.ly/qnlqOfa
Lwanga, E. H., J. Rodríguez-olán, and I. Evia-castillo, 2008. Relación entre la fertilidad del suelo y su población de macroinvertebrados. Terra Latinoamericana, 26(2): 171–181. https://cutt.ly/znlqAKR
Martínez-aguilar, F. B., F. Guevara-hernández, C. E.Aguilar-jiménez, L. A.Rodríguez-larramendi, M. Beatriz, R. Manuel, y A. La, 2020. Caracterización físico-química y biológica del suelo cultivado con maíz en sistemas convencional, agroecológico y mixto en la Frailesca, Chiapas. Terra Latinoamericana, 38: 871–881. https://cutt.ly/SnlqK7S
Mueller, K. E., N. Eisenhauer, P. B. Reich, S. E. Hobbie, O. A. Chadwick, J. Chorover, T. Dobies, C. M. Hale, A. M. Jagodziński, I. Kałucka, M. Kasprowicz, B. Kieliszewska-Rokicka, J. Modrzyński, A. Roz˙en, M. Skorupski, Ł. Sobczyk, M. Stasińska, L. K. Trocha, J.Weiner and J. Oleksyn. 2016. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biology and Biochemistry, 92(October): 184–198. https://cutt.ly/QnlqCgD
Noguera-Talavera, A. R. S. M. A. 2011. Diversidad y distribución de la macrofauna edáfica en dos sistemas de manejo de Moringa oleifera (Lam.): relación con las propiedades del suelo. La Calera, 16: 81–85. Doi: 10.5377/ calera. v17i29.6528
Pinzón Triana, S., Rousseau, G., Rocha da Piedad, A., Celentano, D., Corrêa Zelarayán, M. y H. Braun, 2015. La macrofauna del suelo como indicadora de degradación de bosques ribereños en la amazonia oriental brasilera. Revista de La Facultad de Agronomía, La Plata, 114(1): 49–60. https://cutt.ly/anlq9x8
Reyes, Y., y L. N. Maturel. 2015. El análisis estadístico aplicado a la gestión de la enseñanza para la toma de decisiones. Rev. Cuba. cienc. inform. (En línea), 9(3): 113127. https://cutt.ly/Cnlq80y
Rodríguez, A. F., H. L. Limachi, F.R. Reátegui, T. R. Escobedo, B. J. Ramírez, C. F. Encarnación, G. J. Maco, C. W. Guzmán, M. W. Castro. 2010. Zonificación Ecológica y Económica de Amazonas. 199. https://cutt.ly/znlwodN
Rojas-Múnera, D. M., A. Feijoo-Martínez, L. J. Molina-Rico, M. C. Zúñiga, and H. Quintero. 2021. Differential impact of altitude and a plantain cultivation system on soil macroinvertebrates in the Colombian Coffee Region. Appl Soil Ecol, 164(June 2020). https://cutt.ly/Onlwdi9
Sánchez, B. R. M. R. 2005. Materia orgánica y actividad biológica del suelo en relación con la altitud, en la cuenca del río Maracay, estado Aragua. Agronomía Tropical, 55(June 2016): 5007–5534. https://cutt.ly/Anlwgiv
Santorufo, L., C. A. M. Van Gestel, A. Rocco and G. Maisto. 2012. Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161: 57–63. https://cutt.ly/EnlwjRJ
Silva, E. da, E. Velásquez, A. Santos, M. L. C. Bartz, P. Lavelle y G. G. Brown. 2015. Indicador general de calidad del suelo en diferentes sistemas de uso del suelo en el Sur de Brasil. V Congreso Latinoamericano de Agroecología - SOCLA, 1, 6–10. https://cutt.ly/tnlwl3y
Siregar, R., A. Nasution and Z. Marheni. 2019. Exploration of macrofauna in Coffee plants. IOP Conference Series: Earth and Environmental Science, 305(1). https://cutt.ly/SnlwvmV
Smith, J. L., J. J. Halvorson, and H. Bolton, 2002. Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biology and Biochemistry, 34(11): 1749–1757. https://cutt.ly/Bnlwnbr
Sofo, A., A. N. Mininni and P. Ricciuti, 2020. Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4): e456 https://cutt.ly/tnlwQiS
Teixeira, V.M. E. S. M. Silva. 2014. Fauna edáfica em sistemas arborizados de café conilon em. Coffee Science, 9(3): 385–393. https://cutt.ly/3nlwEiX
Velasquez, E. and P. Lavelle, 2019. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica, 100(July 2018): 103446. https://cutt.ly/BnlwToS
Velmourougane, K. 2016. Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica, Article ID 3604026
Vera‐aviles, D., C. Suarez‐capello, M. Llugany, C. Poschenrieder, P. De Santis and M. Cabezas‐guerrero. 2020. Arthropod diversity influenced by two musa‐based agroecosystems in ecuador. Agriculture (Switzerland), 10(6): 1–13. https://cutt.ly/ynlwId2
Welemariam, M., F. Kebede, B. Bedadi and E. Birhane. 2018. The effect of community-based soil and water conservation practices on abundance and diversity of soil macroinvertebrates in the northern highlands of Ethiopia. Agronomy, 8(4): 8040056 https://cutt.ly/7nlwPdQ
Walkley, A., and I. A. Black. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29–38. https://cutt.ly/InlwSx0
Published
2021-10-01
How to Cite
Morales Rojas, E., Chávez Quintana, S., Chichipe Vela, E., Oliva, M., & Quiñones Huatangari , L. (2021). Edaphic macrofauna and soil physicochemical properties, in smallholder coffee farms . Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(4), 934-950. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/36803
Section
Crop Production