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RESUMO  
 
Introdução: A poluição por metais pesados tem grandes impactos na saúde e nos ecossistemas; tecnologias de 
remediação podem reduzir custos para resolver esses problemas. Os metais pesados representam um sério 
problema no meio ambiente principalmente por sua tendência a persistir, bioacumular e biomagnificar na cadeia 
trófica. Remover esses compostos tóxicos das águas residuais ainda é uma tarefa desafiadora. Objetivo: A 
capacidade de remoção de metais pesados foi analisada usando pelotas adsorventes feitas com bentonita 
natural, caulim e zeólita. Este estudo descreve o equilíbrio de adsorção e cinética de remoção de metal usando 
análise de regressão linear e não linear. Os mecanismos de adsorção também foram analisados. Métodos: A 
qualidade do ajuste dos dados de equilíbrio de adsorção foi testada com as quatro formas linearizadas da 
equação de Langmuir, bem como os modelos de Freundlich, Temkin e Dubinin-Radushkevich. Para escolher o 
modelo de melhor ajuste com maior confiabilidade, cinco funções de erro foram utilizadas: R2, X2, SSE, ABS e 
ARE. Para a cinética de adsorção os modelos de Pseudo Primeira Ordem, Pseudo Segunda Ordem e Elovich 
foram estudados com análise de regressão linear e não linear. Resultados e Discussão: A linearização tipo I 
da isoterma de Langmuir deu o melhor ajuste para os três metais, com capacidades máximas de adsorção para 
chumbo, cobre e cádmio de 7,27, 1,45 e 0,28 mg/L respectivamente. Os resultados mostram que a Pseudo 
Segunda Ordem com regressão linear melhor ajustada para dados de chumbo e cobre e o modelo Pseudo 
Primeira Ordem com regressão linear para cádmio. Conclusões: A regressão não linear foi considerada melhor 
para se ajustar aos modelos de equilíbrio de adsorção e a regressão linear para se ajustar aos modelos cinéticos. 
Os principais mecanismos responsáveis pela adsorção no sistema são pensados para ser a troca iônica entre 
grupos funcionais e cátions, e atração de carga superficial relacionada às forças de Van der Waals. 

Palavras-chave: Aluminossilicatos; peletização; tratamento de água poluída. 
 

ABSTRACT  
 
Background: Heavy metal pollution has significant impacts on health and ecosystems; remediation technologies 
can reduce the cost to solve these problems. Heavy metals present a severe problem in the environment, mainly 
for their tendency to persist, bioaccumulate and biomagnification in the trophic chain. Removing these toxic 
compounds from wastewater remains a challenging task. Aim: Heavy metal removal capacity was analyzed using 
adsorbent pellets made with natural bentonite, kaolin, and zeolite. This study describes the equilibrium adsorption 
and kinetics of metal removal by using linear and nonlinear regression analysis. Adsorption mechanisms were 
also analyzed. Methods: The goodness of fit of the adsorption equilibrium data was tested with the four linearized 
forms of the Langmuir equation, as well as the Freundlich, Temkin, and Dubinin-Radushkevich models. To choose 
the best-fit model with greater reliability, five error functions were used: R2, X2, SSE, ABS, and ARE. For 
adsorption kinetics the Pseudo First Order, Pseudo Second Order and Elovich models were studied with linear 
and nonlinear regression analysis. Results and Discussion: Type I linearization of the Langmuir isotherm 
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showed the best fit for the three metals, with maximum adsorption capacities for lead, copper, and cadmium of 
7.27, 1.45 and 0.28 mg/L, respectively. The results show that Pseudo Second Order with linear regression best 
fitted for lead and copper data and Pseudo First Order model with linear regression for cadmium. Conclusions: 
Nonlinear regression was found better to fit adsorption equilibrium models and linear regression to fit kinetics 
models. The main mechanisms responsible for adsorption in the system are thought to be ion exchange between 
functional groups and cations and surface charge attraction related to Van der Waals forces. 
 
Keywords: Alluminosilicates; pelletization; wastewater treatment. 

 
RESUMEN  
 
Antecedentes: La contaminación con metales pesados tiene graves impactos en la salud y los ecosistemas, las 
tecnologías de remediación pueden reducir los costos asociados a la resolución de estos problemas. Los metales 
pesados son un problema ambiental principalmente por su tendencia a ser persistentes, bioacumularse y 
biomagnificarse en la cadena trófica. Remover estos compuestos tóxicos de las aguas residuales continúa siendo 
un reto. Objetivo: La capacidad de remoción de metales pesados se analizó empleando adsorbentes hechos 
con bentonita, caolín y zeolita natural. Este estudio describe la cinética y parámetros de remoción de metales 
usando el análisis de regresión lineal y no lineal. Métodos: El ajuste de datos al equilibrio de adsorción se 
comparó con las cuatro formas linearizadas de la ecuación de Langmuir, así como con los modelos de Freundlich, 
Temkin y Dubinin-Radushkevich. Para escoger el modelo de mejor ajuste con mayor confiabilidad, se aplicaron 
cinco funciones de error: R2, X2, SSE, ABS y ARE. Para la cinética de adsorción se estudiaron los modelos de 
Pseudo Primer Orden, Pseudo Segundo Orden y Elovich con análisis de regresión lineal y no lineal. Resultados 
y discusiones: La linearización Tipo I de la isoterma de Langmuir fue la de mejor ajuste para los tres metales, 
con capacidades máximas de adsorción para plomo, cobre y cadmio de 7.27, 1.45 y 0.28 mg/L respectivamente. 
Los resultados muestran que el modelo de Pseudo Segundo Orden con regresión lineal fue el de mejor ajuste 
para plomo y cobre, y que el modelo de Pseudo Primer Orden con regresión lineal fue el de mejor ajuste para el 
cadmio. Conclusiones: La regresión no lineal se ajustó mejor a los modelos de equilibrio de adsorción y la 
regresión lineal a los modelos cinéticos. Se podría inferir que los principales mecanismos responsables de la 
adsorción del sistema son el intercambio iónico entre grupo funcionales y cationes, y la atracción por carga 
superficial relacionada con las fuerzas de Van der Waals. 
  
Palabras clave: Aluminosilicatos; peletización; tratamiento de aguas residuales. 

 

 

1. INTRODUCTION:  
  

Heavy metal pollution has major impacts 
on health and ecosystems, and applying 
prevention technologies could reduce the costs 
associated with alleviating these problems. Heavy 
metals have toxic characteristics that aggravate 
the environmental pollution problem, i.e. 
persistence, bioaccumulation, and 
biomagnification (Kurniawan, Ismadji, Soetaredjo, 
and Ayucitra, 2014). Thus, how effectively and 
intensely remove undesired metals from 
wastewater is a serious and challenging task. 
Various technology proposed to remove heavy 
metals i.e., chemical precipitation, ion exchange, 
membrane filtration, electrochemical treatment. 
Chemical precipitation, used as a primary 
treatment, generates large amounts of hazardous 
waste. Membrane technologies (i.e., 
electrodialysis, reverse osmosis) gives excellent 
potential in the treatment process but high 
installation, maintenance, and energy costs 
(Renu, Agarwal, and Singh, 2017). Adsorption has 
many advantages compared to other treatments 
(Zhao, Xu, Zhang, Rong, and Zeng, 2016); it is a 

simple and economical treatment process that can 
remove heavy metals and a wide range of other 
contaminants (Worch, 2012). 

Among the available adsorbents, clays, 
zeolites, and aluminosilicates are classified as the 
promising ones for heavy metals removal from 
aqueous systems. This is partly because of their 
great cation exchange capacity, low cost, high 
availability, high specific surface area, selectivity 
and regeneration capacity (Ismadji, Soetaredjo, 
and Ayucitra, 2015; Kurniawan et al., 2014; 
Novikova and Belchinskaya, 2016). 

Evaluation of the goodness of fit to any 
model and determination of the parameters will 
enable the possible adsorption mechanisms to be 
understood. This is best done using regression 
analysis, either linear or nonlinear depending on 
their mathematical nature. In linear regression, the 
experimental data are adjusted to the to the linear 
expression of the model. In nonlinear regression, 
the parameters come from the nonlinear form of 
the model, and linearization, and linearization is 
not needed (Foo and Hameed, 2010). 

Linear regression is one of the most 
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commonly used methods, despite the non-linearity 
of the kinetic and isothermal models and the linear 
analysis (Gusain, Srivastava, Sillanpää, and 
Sharma, 2016). On the other hand, nonlinear 
regression is a powerful tool for analyzing scientific 
data – the errors generated in linear adjustment 
are reduced (Ghaffari et al., 2017; Khalid, Kazmib, 
Habibc, Jabeena, and Shahzadd, 2015).  

The objective of this study was to examine 
the adsorption of lead, copper and cadmium on 
bentonite, kaolin and zeolite pellets and describe 
the kinetic of metal removal and parameters by 
using linear and nonlinear regression analysis. 
Adsorption mechanisms were also defined in this 
work. 
 

2. MATERIALS AND METHODS:  
 
2.1. Clay characterization 

  
The kaolin, bentonite and zeolite all came 

from natural deposits – the kaolin and bentonite 
from Cajamarca in northern Peru, and the zeolite 
from New Mexico (Hydro Source). 

The aluminosilicates were characterized 
by spectrometry before pelletization and FTIR 
analysis was done on the pellets. Adsorbent 
pellets were ground in an agate mortar. 
Subsequently about 100 mg of adsorbent powder 
was analyzed at room temperature (20.3 ºC) and 
66% of relative humidity. The analysis was made 
using a Perkin Elmer Frontier MIR spectrometer, 
with a 4cm-1 resolution and a KBr pressed disc 
technique. 

 
2.2. Reagents 

 
The metallic reagents – lead nitrate 

(Pb(NO3)2), copper sulfate pentahydrate 
(CuSO4.5H2O), and standard cadmium solution 
(1,000 mg/L) – were supplied by Merck 
Laboratories. Multimetallic solutions were 
prepared by diluting the reagents in distilled water, 
and the pH was adjusted with H2S04 or KOH. 
Standard solutions for lead, copper, and cadmium 
were elaborated in four different concentrations, 
diluting standard stock solutions of 1000 mg/L 
concentration. This allowed obtaining the 
calibration curve. After adsorption and without 
further filtration, heavy metal concentrations were 
measured with an atomic absorption spectrometer 
(Model AA-700, Shimadzu), using an acetylene/air 
flame. The detection limit of the mentioned 
equipment for the three metals was between 0.001 
mg/L and 0.009 mg/L. Wavelength measures for 
lead, copper and cadmium were 217 nm, 324.8 

nm, and 228.8 nm, respectively. The slit width for 
all metals was 0.7 nm. 
 
2.3. Pelletization 

 
The dried clays and zeolites were 

screened to a particle size below 33 μm. Each 
pellet contained 67% zeolite, 29% bentonite, and 
4% kaolin. The pellets were made using an 
adapted form of the method described in Miranda 
et al. (2015). The zeolite, bentonite, and kaolin 
powder mix were made into a paste with distilled 
water and then kneaded and passed through a 
manual extruder to form pellets 5 ± 0.1 mm long x 
2 mm diameter. These were dried and calcined 
following Ciosek et al. (Ciosek, Luk, Warner, and 
Warner, 2016). The pellets were oven-dried at 105 
°C for 18 hours and then calcined at 600 °C for 6 
hours, increasing the temperature at 5 °C/min. 
 
2.4. Adsorption tests 
 
2.4.1 Adsorption column 

 
Adsorption was evaluated in a column 

using a system similar to that described by Salem 
and Sene (Salem and Akbari Sene, 2012). A total 
of 300 mL aliquots of the solution were circulated 
at 20 mL/min using a peristaltic pump. 
Experiments were conducted at different 
parameters, i.e., circulation time, pH, and initial 
heavy metals concentration. 

These were dried and calcined following 
recommendations by Ciosek et al. (2016). The 
pellets were oven-dried at 105 °C for 18 hours and 
then calcined at 600 °C for 6 hours, increasing the 
temperature at 5 °C/min. 
 
2.4.2 Removal efficiency and adsorption capacity 

 
Removal efficiency (%Rem) was 

determined using Equation 1: 

 

 
%Rem =

Co − Ce

Co
∙ 100 (Eq. 1) 

where Co (mg/L) and Ce (mg/L) represent the initial 
and final concentrations of the heavy metals. 

The equilibrium adsorption capacity, Qe, 
(mg/g) was found with Equation 2: 

 
Qe =

Co −  Ce

m
∙ V (Eq. 2) 

where Ce (mg/L) is the equilibrium concentration, 
m the total mass of adsorbent (g) and V the 
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volume (L) of solution. 
 
2.5. Equilibrium and kinetic studies 

 
Adsorption equilibrium tests were 

performed with 300 mL of multimetallic solution, an 
adsorbent dose of 15 g/L and pH 4.5 ± 0.5, for 160 
minutes. Initial lead and copper concentrations 
were between 1.5 and 30 mg/L, and cadmium 
between 0.5 and 15 mg/L. The data were fitted to 
the Langmuir, Freundlich, Temkin, and Dubinin-
Radushkevich (D-R) models. 

The Langmuir model (Equation 3) was the 
first equation proposed to describe adsorption: 

 

 
Qe =  

Qmax ∙ KL ∙ Ce

1 + KL ∙ Ce
 (Eq. 3) 

where Qe (mg/g) is the amount of solute adsorbed 
onto the adsorbent surface in equilibrium 
conditions, Qmax (mg/g) the maximum removal 
capacity of the adsorbent, and KL (L/mg) and Ce 
(mg/L) the parameters of affinity and equilibrium 
concentration of the solute. The separation factor, 
RL, is calculated using Equation 4: 
 

 
RL =  

1

1 + b ∙ Co
 (Eq. 4) 

where Co (mg/L) is the initial concentration and b 
the intercept of the nonlinear equation. 

The Freundlich isotherm (Equation 5) is 
also one of the very early empirical adsorption 
equations: 

 

 Qe =  KF ∙ Ce
1/n

 (Eq. 5) 

where KF ((mg/g).(L/mg)^(1/n)) indicates the 
adsorption capacity of the adsorbent and n the 
system’s heterogeneity.  

The Temkin model is represented in 
Equation 6: 

 

 Qe =  BT ∙ ln(AT ∙ Ce) (Eq. 6) 

where AT and BT are equilibrium binding and 
parameter constants.  

The D-R model is expressed in Equation 7: 

 Qe = Qmax ∙ e−βε2
 (Eq. 7) 

β indicates the average sorption of free energy E 

(kJ/mol). 

To analyze the adsorption kinetics, 500 mL 
portions of multimetallic solution were prepared, 
with initial Cu and Pb concentrations of 15 mg/L, 
and 5 mg-Cd/ L, an adsorbent dose of 10 g/L and 
pH 4 ± 0.5. Samples of the treated solution were 
taken between minutes 10 and 300. The pseudo 
first order (PFO), pseudo second order (PSO) and 
Elovich models were all analyzed. The PFO model 
(Equation 8) was proposed by Lagergren: 

 

 Qt = Qe(1 − exp(k1 ∙ T)) (Eq. 8) 

where k1 (1/min) and Qe (mg/g) are parameter 
constants.  

The PSO model, developed by Ho and 
McKay, is shown in Equation 9: 

 

 
Qt =

Qe 
2 ∙ k2 ∙ T

1 + Qe ∙ k2 ∙ T
 (Eq. 9) 

where k2 (g.mg^-1.min^-1) is the equation 
parameter.  

Zeldowitsch developed the Elovich model 
(Equation 10): 

 

 
Qt =

1

Qt
ln ((1 + Qe ∙ ke ∙ T) (Eq. 10) 

where ke (1/min) is the desorption constant. 
 
2.6 Statistical analysis 

 
For linear regression, the data were plotted 

according to the linearized form of each model 
(Table 1). It is noted that the Langmuir model can 
be linearized in four ways. The intercept and slope 
values on the graph were calculated, and the 
parameters for each equation were determined. 

Table 1. Linear expressions of Langmuir model 
 

Langmuir 
model 

Linearization 

Type I 
1

Qe
=

1

Qmax ∙ KL
∙

1

Ce
+

1

Qmax
 

Type II 
Ce

Qe
=

1

Qmax ∙ KL
+

Ce

Qmax
 

Type III Qe = Qmax  −
1

KL
.
Qe

Ce
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Type IV 
Qe

Ce
= KLQmax − KLQe 

 
The nonlinear regression was optimized 

using the Excel Solver plug-in, with the GRG 
algorithm. Goodness of fit was measured on the 
basis of five different error functions (Table 2). 

 
Table 2. Error functions 

 

Function 
name 

Error function 

Sum of 
square 

errors- SSE 
SSE = ∑(yi,exp − yi,mod)

2
n

i=1

 

Coefficient of 
determination 

– R2 

𝐑𝟐 = 𝟏 −
∑ (𝐲𝐢,𝐞𝐱𝐩 − 𝐲𝐢,𝐦𝐨𝐝)

𝟐𝐧
𝐢=𝟏

∑ (𝐲𝐢,𝐞𝐱𝐩 − 𝐲𝐢,𝐞𝐱𝐩̅̅ ̅̅ ̅̅ ̅)
𝟐𝐧

𝐢=𝟏

= 𝟏 −
𝐒𝐒𝐄

𝐒𝐒𝐓
 

Sum of 
absolute 

errors - ABS 
𝐴𝐵𝑆 = ∑|𝑦𝑖,𝑒𝑥𝑝 − 𝑦𝑖,𝑚𝑜𝑑|

𝑛

𝑖=1

 

Chi square – 
X2 

x2 = ∑
(yi,exp − yi,mod)

2

yi,mod

n

i=1

 

Average 
relative error 

- ARE 

ARE =
100

n
∑ |

yi,exp − yi,mod

yi,mod
|

n

i=1

 

 

3. RESULTS AND DISCUSSION:  
 
3.1 Adsorbent characterization 

 
 Table 3 shows the chemical composition of 
the bentonite, kaolin and zeolite adsorbents. The 
three minerals consist mainly of silica and alumina, 
with lesser amounts of calcium, magnesium, 
sodium and potassium oxides. This confirms the 
potential of these materials for use as adsorbents 
(Uddin, 2017). The sodium and potassium oxides 
concentrations, and the magnesium and calcium 
oxides represent the feldspar content (Krupskaya 
et al., 2019). The ignition loss values indicate that 
these materials have low carbonaceous matter 
and high mineral content (Uddin, 2017). 
 
Table 3. Chemical composition of the clays and 

zeolite 
 

Element Bentonite Kaolin Zeolite 

SiO2 62.63% 44.60% 65.91% 

Al2O3 17.10% 36.09% 10.60% 

Fe2O3 3.53% 3.43% 3.03% 

CaO 2.61% 1.29% 2.52% 

MgO 0.61% 0.35% 0.18% 

Na2O 0.99% 0.30% 3.77% 

K2O 0.07% 0.19% 0.14% 

TiO2 0.53% 1.42% 0.17% 

P2O5 0.03% 0.03% 0.07% 

Loss off 
ignition 11.80% 12.30% 13.60% 

  

Figure 1 shows the FTIR analysis in the 
spectrum range between 400 and 4000 cm-1. No 
peaks were observed in the first region of the 
spectrum, between the 3500 and 1600 cm-1 
bands, attributed to surface and internal hydroxyl 
group vibrations. The curve is flat from 2842.60 to 
1626 cm-1, a region attributed to the adsorption of 
water in aluminosilicates (Hofmeister and Bowey, 
2006). In the last region there is higher band 
intensity, this corresponds to the vibration of the 
oxygen bonds with aluminum or silicon. For the 
latter, the peaks are at 1023.04 cm-1 (from T-O 
junctions where T can be either aluminum or 
silicon) and six peaks in the range 874.79 and 
447.00 cm-1 (corresponding to the T-O-T 
vibrations) (Madejová, Gates, and Petit, 2017). 

 
3.2 Langmuir linearization 

 
Langmuir model can be linearized in four 

different types of equations (Table 1), giving 
different results according to the formula used. 
Table 4 shows the equation parameters and error 
functions for each type of Langmuir linearization – 
the values vary independently, increasing or 
reducing the error. Langmuir equation types I and 
II are those most used because the results of the 
adjusted equations have less error (Armagan and 
Toprak, 2013). Table 4 shows that equations types 
I and IV were the ones with the least error. 

The type I Langmuir equation obtained the 
highest R2 and lowest ABS and ARE for the three 
metals studied. Type II Langmuir equation 
represents the smallest X2 and lowest SSE for lead 
and copper. Type III equation shows the lowest 
SSE for cadmium, and type IV equation shows, the 
lowest ABS for copper and cadmium. From Table 
4, it can be concluded that the type I Langmuir 
equation had the better fit to data. 

These results show the complexity of 
estimating isothermal parameters using 
linearization techniques (Armagan and Toprak, 
2013). For example, the R2 linearization values for 
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each type (Table 4) and the other three models 
(Table 5) are all different. For lead and copper, the 
Langmuir equations types II, III, and IV R2 values 
suggest that the Freundlich model gives the best 
fit. For cadmium, taking into account only 
Langmuir types II, III, and IV R2 values, the Temkin 
isotherm would be the best fit. 
 
3.3 Equilibrium isotherms 

 
Table 5 compares the error functions of 

equilibrium models with linear and nonlinear 
regression, allowing the model to fit the data 
better. The X2 value for 0.95 probability and 6 
degrees of freedom is 1.64; all values are less than 
or equal to 1 (Table 5). 

When changing from linear to nonlinear 
analysis, the values changed in all cases, except 
with R2 of Temkin, and only for cadmium with X2. 
The latter is to be expected given the low variation 
and concentrations of the data. Długosz and 
Banach (Długosz and Banach, 2018) obtained 
similar results in their study of copper adsorption 
on vermiculite; the Temkin model’s R2 was the 
same linear and nonlinear analyses. 

The tendency is that nonlinear regression 
analysis reduces the error difference between 
experimental and expected data (Table 5). 
Comparing the error function values obtained with 
linear and nonlinear regression shows that four 
error functions (X2, SSE, ABS, and ARE) indicate 
that the Temkin model had the worst fit to the 
experimental data. Regarding the error function 
variation from linear to nonlinear analysis, R2 
increased, and ABS and ARE decreased in all 
cases. This supports the findings of several 
authors who confirm that nonlinear regression 
analysis gives better results (Rostami, 
Pourzamani, Bina, and Karimi, 2019). 

The differences between experimental 
data and the linear expressions of isotherms may 
be due to problems in the transformation from a 
nonlinear form, which is how adsorption models 
are expressed and formulated to a linear one. This 
changes the experimental error and the normality 
assumption in the least-squares. In linear 
regression the linearity of the points is assumed 
but not tested, and the slope and intercept of the 
best fit are predicted. The linear method assumes 
that the scattered points around this straight line 
have a Gaussian distribution and that the error 
distribution is the same for each value of "x". 
However, this rarely occurs in adsorption 
equilibrium models, where the distribution error is 
altered by transforming the data to linear form. In 
the linear method "y" is predicted for the 

corresponding "x" and only the error distribution 
along the “y” axis is considered, without taking into 
account its correspondence on the “x” axis 
(Armagan and Toprak, 2013). This yields different 
error values and parameters depending on how 
the data are linearized. For this reason, as well as 
on the evidence of the results from this study, 
nonlinear regression is considered the best 
method for determining equilibrium model 
adsorption parameters. 

The linear regression error functions show 
that the Temkin model had the lowest R2, and the 
highest SSE and ABS. For lead, the Langmuir 
model had the highest R2, and the lowest SSE and 
ABS, while, for copper, the Freundlich model had 
the highest R2 and lowest SSE (0.95 and 5.22), 
and the Langmuir model the highest R2 and lowest 
ABS (0.98 and 0.48). Cadmium had higher and 
lowered R2 and X2 in the Temkin model with linear 
regression, but four error functions indicate that 
the Langmuir model best represents the data. For 
lead, R2, SSE, and ABS values confirm that the 
Langmuir isotherm is the best fit, while R2 and ABS 
confirm the same for copper. 

Error functions in the linear regression 
confirm that the Langmuir model best fits the lead, 
copper, and cadmium adsorption data, followed by 
the Freundlich model. Similar studies in which 
linear and nonlinear regression have been 
compared have had better results with linear 
analysis of the Langmuir model (Mallakpour and 
Rashidimoghadam, 2019), and sometimes with 
Freundlich, Temkin and D-R models (Batool, 
Akbar, Iqbal, Noreen, and Bukhari, 2018). 

Figure 2 shows the Langmuir, Freundlich, 
Temkin, and D-R experimental data and nonlinear 
regression curves models. It is notorious the better 
fit of data to Langmuir and Freundlich models for 
the three metals. 

Table 6 shows the parameters and R2 
values for each model for linear and nonlinear 
analyses, and the great variation between the 
Langmuir linear and nonlinear parameters model 
for lead, copper and cadmium is evident. 
 
3.3.1 Langmuir 

 
The error function analysis for lead, copper 

and cadmium in the nonlinear regression indicates 
that the Langmuir model best describes the 
experimental data. Other authors have obtained 
similar results with heavy metal adsorption onto 
clays (K. Abu-Hawwas, M. Ibrahim, and M. 
Musleh, 2018; Mu’azu, Bukhari, and Munef, 2020). 
The maximum adsorption capacities predicted by 
the Langmuir model for lead, copper, and 
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cadmium are 7.27, 1.45, and 0.68 mg/g, 
respectively. The best fit by the Langmuir model 
means that the process occurs in a monolayer and 
that each active site houses an adsorbate 
molecule, characteristics typical of physisorption 
(Ismadji et al., 2015). 

The parameter KL measures the adsorption 
intensity between the adsorbate and adsorbent 
(Ismadji et al., 2015). In this study its value was 
highest for cadmium and lowest for lead, implying 
that cadmium molecule adhesion at the interface 
is stronger than that of copper and lead. The 
separation factor, RL, indicates the viability of 
adsorption (Ismadji et al., 2015). Table 6 observed 
that this factor was reduced from a linear to a 
nonlinear regression; however, for the three 
metals, the ranges remained lower than 1, 
indicating that the adsorption is viable. 
 
3.3.2 Freundlich 

 
In the Freundlich model, the parameter KF 

is related to multilayer adsorption capacity, and n 
indicates adsorption intensity, which varies with 
interface heterogeneity (Ismadji et al., 2015). The 
value of n enables understanding of the process 
and the system’s complexity; magnitudes between 
1 and 10 are considered favorable, but values 
exceeding 10 indicate irreversible conditions. 
Nonlinear regression for lead, copper, and 
cadmium yielded values of 1.09, 3.30, and 6.09, 
respectively, showing that the process is viable, 
with adsorption tending to be most substantial for 
cadmium, then copper, and finally lead. KF also 
indicates the sorption capacity of the adsorbent 
(Ismadji et al., 2015). It was highest for copper, 
followed by lead and cadmium. These results 
agree with Bahabadi et al. (Bahabadi, Farpoor, 
and Mehrizi, 2017). They studied adsorption on 
clays and zeolites and concluded that natural 
adsorbents had a greater affinity for copper than 
zinc and cadmium. 

The nonlinear analysis of R2 showed that 
the Freundlich model is second in order 
adjustment for lead and cadmium, and third for 
copper. Similar results were reported by Soleimani 
and Siahpoosh (Soleimani and Siahpoosh, 2015) 
in relation to copper adsorption with nanoclays. 
While the Freundlich model is not the best to 
describe the data, the values of R2, between 0.968 
and 0.986, indicate that the equation may be 
applicable. This can be attributed to the fact that 
active sites can be characterized as monolayer or 
multilayer, and the interface as heterogeneous 
(Padmavathy and Murali, 2017). 
 
3.3.3 Temkin 

 
Low Qt values for the three metals studied 

indicate that adsorption is physical. The AT value 
decreased in the order Cd>Cu>Pb, indicating that 
cadmium has the highest binding energy of the 
three to the adsorbent. This corroborates the 
results from the Freundlich and Langmuir models.  

According to the nonlinear R2, the Temkin 
model had the lowest fit for lead, copper, and 
cadmium. This behavior is common in adsorption 
studies (Salmani et al., 2019). The results agree 
with the data fit to the Langmuir model, indicating 
the predominance of physisorption. The Temkin 
isotherm is more appropriate for describing 
chemisorption (Ahmedzeki, Rashid, Alnaama, 
Alhasani, and Abdulhussain, 2013; Gao et al., 
2013). 
 
3.3.4 D-R 

 
The D-R model helps to distinguish 

between physical and chemical adsorption using 
the value of E. When this is below 8 kJ/mol, 
adsorption is physical; between 8 and 16 kJ/mol 
ion exchange and chemical mechanisms 
predominate; and above 16 kJ/mol, particle 
diffusion governs the reaction (Sadeghalvad, 
Khosravi, and Azadmehr, 2016). Table 6 shows 
that E is reduced when transferring from linear to 
nonlinear analysis, except below 8 kJ/mol, where 
values were maintained, indicating physical 
adsorption. This corroborates the findings from the 
three other models. 

For lead and cadmium, the nonlinear R2 
places this model third in order of adjustment, 
consistent with several studies showing lower R2 
values with this equation (Mosai and Tutu, 2019; 
Nikolic, Jeffry Robert, and Girish, 2019). 
 
3.4 Kinetics 

 
Experimental data were compared with 

three equations that consider surface reaction 
kinetics as a critical step: the PFO, PSO, and 
Elovich models. The linear regressions for the 
three, and their respective equations, are shown in 
Figure 3.  

 
When changing from linear to nonlinear 

regression (Table 7) the error functions all vary 
except X2 in the PFO model and X2 and R2 in the 
PSO model for lead. Variations are expected when 
moving between linear and nonlinear models – 
e.g., López-Luna et al. (López-Luna et al., 2019) 
had similar outcomes in a study of arsenic and 
manganese adsorption. 
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Having five error functions to select the 
best fit increases the reliability of the results. For 9 
degrees of freedom and p 0.95, X2 is 3.33. Table 
7 shows no data exceeded this limit, even for p 
0.99 (X2 is 2.09). A comparison shows that SSE, 
ABS, and ARE for lead, copper, and cadmium are 
higher in the Elovich equation. 

When changing from linear to nonlinear 
regression concerning error function, R2 increased 
in all cases, except for the PSO model for lead. X2 
decreased for copper and cadmium in all three 
models, but for lead, it remained the same in the 
PFO and PFO models and increased in the 
Elovich model. SSE decreased in all cases, and 
ARE was reduced in the PFO model for lead, and 
in the Elovich model for both lead and copper. 

The error function analysis seems to 
indicate error reduction with nonlinear regression. 
However, the optimal parameter values for 
cadmium could not be found for the PFO model 
when performing nonlinear regression and some 
parameter values suggested during optimization 
were very low (Table 8). The Elovich nonlinear 
parameters, Qe, are much lower than both the 
linear and experimental parameters, which means 
that nonlinear regression cannot be applied 
successfully to the Elovich model. Moreover, the 
lead and copper error functions and parameters 
are similar in the linear and nonlinear regressions. 
The Elovich model’s inapplicability and the small 
difference between linear and nonlinear 
regression for lead and copper meant that kinetic 
analysis was preferred using linear regression. 
Other authors have reported similar results 
(Açikyildiz, Gürses, Güneş, and Yalvaç, 2015). 
Nonlinear regression for kinetic models demands 
specific and previous expertise and takes longer 
(Açıkyıldız et al., 2015). 

The best fit for cadmium was the PFO 
model in linear and nonlinear regression (Table 7). 
Lead and copper showed best fits with the PSO 
model with linear regression, and this was 
maintained in nonlinear regression for lead. Other 
authors have also reported good correlations with 
these models (Milenković et al., 2013) and a 
poorer fit with the Elovich equation (Yousefi et al., 
2018). 

Figure 4 shows linear regression curves of 
the PFO, PSO, and Elovich models. 

 
3.4.1 PFO 

 
The PFO model is widely used to describe 

the heavy metal adsorption but the adsorption 
capacity predicted is usually below the 

experimental one (Dotto, Salau, Piccin, Cadaval, 
and de Pinto, 2017). The Qe values for lead, 
copper, and cadmium are 0.95, 0.94, and 0.85 
mg/g, respectively. Those for lead and copper are 
lower than the experimental maxima for both linear 
and nonlinear regressions. 

In the case of cadmium, in both linear and 
nonlinear regressions, the error functions indicate 
that the PFO model is the best fit. In this model, it 
is assumed that the adsorption rate is directly 
proportional to the adsorbate concentration and 
that the limiting step is diffusion at the adsorption 
surface (Ho and McKay, 1999). Although it is most 
common that the PSO model gives the best fit to 
the data in heavy metal adsorption, other 
researchers have reported similar results (Mejia 
Miranda, Laverde, Avella, and Peña Ballesteros, 
2015). 
 
3.4.2 PSO 

 
Ho and McKay (1999) suggested that, if 

metal ion adsorption fits the PSO model, the 
process limiting step could be chemisorption. This 
would involve adsorbate-adsorbent electron 
exchange, although physical interactions could 
also be the cause. 

In both linear and nonlinear regression 
analysis, lead fits the PSO model best, and the 
same is true for copper in linear regression. 
Several heavy metal adsorption studies with 
bentonite and zeolite, have shown a better fit to the 
PSO model (Melichová and Ľuptáková, 2016; 
Mu’azu et al., 2020). The results seem to indicate 
that chemisorption could control lead and copper 
adsorption.  
 
3.4.3 Elovich 

 
The calculated adsorption capacity of 

metals was lower than the experimental one due 
to this the Elovich equation for linear and non 
linear regression was not suitable to describe 
adsorption capacity of three metals.  

Although the model has been reported to 
adjust better at very low concentrations (López-
Luna et al., 2019), it is usual for this equation to 
have a lower adjustment of data than the PFO 
PSO models (Schwantes et al., 2016).  
 
3.5 Adsorption mechanisms 

 
After selecting the appropriate adsorbent in 

terms of cost, efficiency, selectivity and kinetics, 
the second most important step for effective 
adsorption is to identify the predominant 
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mechanisms and elucidate the interactions 
occurring at the interface. 

Adsorption mechanisms can be classified 
into physisorption, ion exchange, chemisorption, 
and precipitation. Physisorption includes 
processes like surface adsorption, Van der Waals 
interactions and hydrogen bonding (Crini, 
Lichtfouse, Wilson, and Morin-Crini, 2018). Ion 
exchange involves replacing interchangeable 
cations (i.e. Na+, K+, Ca2+ and Mg2+) at the 
interface, and is usually fast and reversible 
(Shaban and Abukhadra, 2017), but also between 
the aluminosilicate Al(OH) and Si(OH) groups and 
the metal ions (Burakov et al., 2018). 
Chemisorption usually involves electrostatic 
interactions, covalent bonds, and complex 
formation, while precipitation can be micro- or 
surface-, or via proton displacement (Crini et al., 
2018). Several authors agree that the above are 
all likely mechanisms in natural adsorbents (Al-Jlil 
and Latif, 2013; Alexander, Ahmad Zaini, 
Surajudeen, Aliyu, and Omeiza, 2018).  

The analysis carried out in the investigation 
did not cover complex formation or surface 
precipitation in the adsorbent; for this reason, it is 
unknown if these mechanisms also play an 
important role in adsorption. 

Adsorption equilibrium and kinetics 
analysis indicate the predominance of 
physisorption in the system. Therefore, it can be 
deduced that the main mechanisms responsible 
for adsorption are: ion exchange between 
functional groups and cations and surface charge 
attraction related to Van der Waals forces. 

 

4. CONCLUSIONS:  
 
 Nonlinear regression was found better to fit 
adsorption equilibrium models and linear 
regression to fit kinetics models. The Langmuir 
isotherm gave the best fit to the experimental data 
with maximum adsorption capacities for lead, 
copper, and cadmium of 7.27, 1.45, and 0.28 
mg/L, respectively. The Freundlich isotherm also 
had high correlation values (R2 between 0.968 and 
0.986), indicating that active sites can be 
characterized as mono or multilayer, and the 
adsorption surface as heterogeneous. The lead 
and copper data were better adjusted to the PSO 
model, and the cadmium data to the PFO model.  
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Figure 1.  FTIR spectra of adsorbent pellets 
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Figure 2. Adsorption equilibrium curves with nonlinear regression for lead (a), copper (b), and 
cadmium (c) 
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Figure 3. Linear regression of PFO (a), PSO (b), and Elovich (c) models 
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Figure 4. Linear regression curves of kinetic models for lead (a), copper (b), and cadmium (c) 
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Table 4.  Adsorption parameters and error functions for Langmuir equations type I, II, III and IV 

  

Model Parameters Pb Cu Cd 

Langmuir 

Type I 

Qmax (mg/g) 1.59 1.18 0.24 

KL (L/mg) 0.38 0.43 1.07 

R2 0.924 0.943 0.991 

X2 1.000 1.000 1.000 

SSE 15.420 14.847 0.641 

ABS 0.720 0.499 0.046 

ARE 25.179 21.776 10.743 

Langmuir 

Type II 

Qmax (mg/g) 0.55 0.74 0.18 

KL (L/mg) 6.68 2.64 2.92 

R2 0.585 0.754 0.915 

X2 0.971 0.754 0.915 

SSE 8.937 0.998 1.000 

ABS 2.180 10.802 0.539 

ARE 47.347 1.543 0.187 

Langmuir 

Type III 

Qmax (mg/g) 0.87 0.92 0.21 

KL (L/mg) 3.79 1.85 2.26 

R2 0.663 0.800 0.941 

X2 0.981 0.999 1.000 

SSE 12.921 13.107 0.603 

ABS 1.582 1.057 0.114 

ARE 51.532 26.926 13.996 

Langmuir 

Type IV 

Qmax (mg/g) 1.16 1.03 0.22 

KL (L/mg) 1.42 1.18 1.83 

R2 0.793 0.853 0.960 

X2 0.994 0.999 1.000 

SSE 15.597 14.423 0.625 

ABS 1.249 0.824 0.092 

ARE 46.458 25.498 13.377 
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Table 5.  Equilibrium models error functions of with linear and nonlinear regression 

  

Model 
 Lead Copper Cadmium 

 Linear Nonlinear Linear Nonlinear Linear Nonlinear 

Langmuir 

R2 0.585 0.987 0.754 0.981 0.915 0.999 

X2 0.971 1 0.998 1 1 1 

SSE 8.937 15.168 10.802 14.275 0.539 0.638 

ABS 2.18 0.494 1.543 0.482 0.187 0.04 

ARE 47.347 25.354 29.728 24.127 17.385 12.043 

Freundlich 

R2 0.953 0.986 0.962 0.968 0.954 0.987 

X2 0.893 1 0.826 1 0.986 1 

SSE 6.311 15.183 5.223 13.59 0.177 0.640 

ABS 3.312 0.502 3.756 0.577 1.042 0.158 

ARE 65.454 24.455 75.963 20.839 95.393 56.663 

Temkin 

R2 0.783 0.783 0.912 0.912 0.972 0.972 

X2 0.783 0.701 0.293 0.958 0.897 0.999 

SSE 0.025 18.922 27.379 15.843 1.33 0.693 

ABS 32.24 2.036 4.432 1.2 1.174 0.231 

ARE 239.701 24.455 166.445 70.823 193.188 67.984 

D-R 

R2 0.553 0.925 0.609 0.974 0.8 0.973 

X2 0.553 0.998 0.988 0.998 0.99 1 

SSE 0.963 17.147 8.695 14.791 0.192 0.640 

ABS 8.226 0.883 2.105 0.703 0.981 0.108 

ARE 53.653 49.691 39.471 35.56 88.828 25.697 
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Table 6.  Lead, copper and cadmium isotherm models linear and nonlinear parameters 
 

Model Parameters 
Pb Cu Cd 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

Langmuir 

Type I 

Qmax (mg/g) 1.59 7.27 1.18 1.45 0.24 0.26 

KL (L/mg) 0.38 0.03 0.43 0.15 1.07 0.68 

RL 0.55-0.94 0.10-0.58 0.14-0.81 0.05-0.59 0.10-0.79 0.07-0.70 

R2 0.923 0.987 0.943 0.981 0.991 0.999 

 

Freundlich 

KF(mg/g).(L/
mg)(1/n) 

0.14 0.24 2.47 0.41 0.004 0.15 

N 2.04 1.09 0.08 3.30 2.31 6.09 

R2 0.953 0.986 0.962 0.968 0.954 0.987 

 

Temkin 

BT (J/mol) 0.22 0.16 0.18 0.12 0.04 0.03 

AT (L/g) 704.12 354.66 525.05 398.13 1561.52 974.9 

R2 0.783 0.783 0.912 0.912 0.972 0.972 

 β(mol2/kJ2) 0.03 0.67 0.04 2.67 0.04 0.23 

D-R Qmax(mol/g) 0.48 1.35 0.55 1.15 0.02 0.22 

 E(kJ/mol) 4.07 0.86 3.48 0.43 3.68 1.47 

 R2 0.553 0.925 0.609 0.974 0.800 0.973 

 
Table 7.  Kinetic model error functions of with linear and nonlinear regression 

 

Model 
 Pb Cu Cd 

 Linear Nonlinear Linear Nonlinear Linear Nonlinear 

PFO 

R2 0.942 0.950 0.899 0.942 0.843 0.892 

X2 1.000 1.000 1.000 0.984 0.240 0.000 

SSE 34.156 30.888 21.290 14.093 0.974 0.613 

ABS 0.645 1.015 0.986 2.375 1.890 2.492 

ARE 17.444 17.174 27.637 45.993 85.162 102.999 

PSO 

R2 0.950 0.950 0.918 0.940 0.625 0.680 

X2 1.000 1.000 1.000 0.933 1.000 0.999 

SSE 32.915 32.522 19.736 12.459 2.192 1.539 

ABS 0.605 0.662 0.778 2.977 0.461 0.965 

ARE 14.923 15.298 20.320 53.996 23.784 46.472 

Elovich 

R2 0.950 0.952 0.862 0.939 0.702 0.892 

X2 0.989 1.000 0.972 0.045 1.000 0.000 

SSE 50.355 32.278 33.483 8.032 1.903 0.613 

ABS 5.066 0.965 5.410 4.883 0.333 2.491 

ARE 127.619 31.310 165.581 80.483 13.577 102.983 
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Table 8.  Kinetic models parameters and coefficients of determination 

 

Model Parameters 
Pb Cu Cd 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

PFP 

Qe (mg/g) 1.46 1.46 1.32 1.32 0.22 0.67 

k1 (1/min)  0.01 1.00E-02 0.01 4.14E-03 3.45E-03 7.61E-08 

R2 0.942 0.950 0.899 0.942 0.843 0.889 

PSO 

Qe (mg/g) 1.93 1.93 1.80 1.80 0.39 0.30 

k2 (g.mg-

1*min-1) 
5.60E-03 5.43E-03 3.90E-03 1.48E-03 0.06 0.05 

R2 0.950 0.950 0.918 0.940 0.625 0.680 

Elovich 

Qe (mg/g) 0.20 0.05 0.19 2.29E-03 0.05 6.10E-07 

ke (1/min) 2.62 2.61 3.16 3.15 19.31 0.03 

R2 0.950 0.952 0.862 0.939 0.702 0.892 

 

 

 

 


