SMPTE Object Identification

Prepared and presented by:
Jim Wilkinson, SMPTE Fellow
Sony BPRL, UK

SMPTE 298M (ULs)

- Titled: “Universal Labels for Unique Identification of Digital Data”
- Uses ISO/IEC object identifiers as specified by 8824-1
 - Provides a hierarchy through a sequence of identification nodes – from 4 bytes upwards in length in increments of 4 bytes
 - SMPTE lies directly under ISO as “ISO:SMPTE”
- SMPTE defines all its ULs as 16 bytes in length
 - 0x06.0E.2B.34. [+12 further bytes]
- ULs are not widely used outside of SMPTE
- Within SMPTE, ULs provide for interoperability of essence (pictures, sound, data essence) and all kinds of metadata
OIDs as Keys

- SMPTE Labels can be used both for data identification and for data coding.
- Coding is the well-known Key-Length-Value triplet used in many systems.
 - This is essentially a machine-level code.
 - Highly efficient coding with minimal overhead.
 - But not human-friendly.
- Coding is enshrined in SMPTE 336M.

SMPTE 336M (KLV Coding)

- Defines SMPTE Keys as ULs that use short-form BER coding.
 - Result: every byte is a separate codeword in the range 0x01~0x7F.
- Defines KLV coding for values that are categorised as:
 - Data Groups - multiple components of essence, metadata, control or other data where each component is a data element.
 - Data Elements - single components of essence, metadata, control and other data.
 - Data Types - identification and coding of information which defines the data representation of elements and groups.
- It also defines other forms of coding, notably:
 - Labels - ULs that are to be used as values alone and may be used as values in a K-L-V triplet.
SMPTE Registers

- SMPTE Registers define the usage of each SMPTE UL
- So there are registers for:
 - Groups (not much populated yet though)
 - Elements (well populated and well used)
 - Types (still in development)
 - Labels (well populated and well used)
 - And a prototype register for enumerated terms (textual and numeric enums)

- Each SMPTE is defined by:
 - A controlling standard that defines the structure of the register
 - The contents of the register (typically as Excel)

- All SMPTE registers are freely available on www.smpte-ra.org

Generalised Registry Model (WiP)

![Generalised Registry Model Diagram]

Notes on ‘Types’:
1. ‘Data Type’ is abstract and never directly instantiated but all concrete types are a sub-class of "Type".
2. A Base type is a basic unit of data representation that permits all values (e.g. UInt16).
3. A Constrained type is a base type that limits the range of data values (e.g. Chinese character values in UTF16)
4. An Enumerated Base type is a base type that has defined data values which may be numeric or textual.
5. A Constructed type may be composed of any combination of types of whatever form (base, constrained, enumerated or other constructed).
6. A Constrained Constructed type is a constructed type that has restrictions on the range of data values (e.g. limits on the range of values for an array).
7. An Enumerated Constructed type is a constructed type that has defined data values that may be either number or textual (note - strings are constructed types and can be enumerated as controlled terms)
Register Structures

The primary nodes of each register are defined as:

- Class 1: Identification and Location (local and global scopes)
- Class 2: Administration (business data including security)
- Class 3: Interpretation (how a value is to be interpreted - thesauruses)
- Class 4: Parametric (technical data for coding and compression)
- Class 5: Process (identification of processes and device or processor settings)
- Class 6: Relational (identification of how data relates to other data)
- Class 7: Spatio-Temporal (time data and geo-spatial coordinates)
- Class 12: Compound (not widely adopted)
- Class 13: Public Organisationally Registered
- Class 14: Private Organisation Registered
- Class 15: Experimental (a sandpit for testing - not interoperable)

SMPTE EG38 documents the full tree structure

Nodes and Leaves

- Nodes do not contain useful values but are used for collecting related register items in one place
- Leaves contain the items that define the register
Register Management

SMPTE R30 Technical Committee
- Governs the process by which the SMPTE Registration Authority manage, store and disseminate the information contained by individual registers.
- Currently the registers are authored in spreadsheet form
- Publication is currently in spreadsheet form but R30 is looking to publish the register in a web-friendly form for access by web browsers
- Work is focused on the automatic generation of web-based access through a publicly available (and free!) database solution

Public and Private Org Spaces

Public Organisation space (class 13) has been defined across all registers to allow organisations to register and publish their entries for open access
- This space is free, but requires the organisation to publish all its uses of their register space

Private Organisation space (class 14) requires a payment to the SMPTE-RA but does not require all entries to be published
- POA to the SMPTE-RA, currently $2500

In each case, the organisation has a space of 6 bytes allocation permitting a total of approx 4×10^{12} values
KLV Application Coding

- KLV Coding of elements and groups can be concatenated to provide a ‘Scheme’
- Such a ‘scheme’ is MXF (Material eXchange Format)
- Now widely adopted throughout the professional content creation industries (both digital A/V and digital cinema)
- MXF is essentially built of the following KLV coded components:
 - KLV coded metadata
 - KLV coded audio-visual essence
 - KLV coded file indexing tools

SMPTE UMID

- UMID - Unique Material IDentifier (SMPTE 330M)
 - “a unique identifier for audio-visual material which is locally created and globally unique”
 - “Audio-visual material”:
 - Any one or any combination of picture (or video) essences, sound (or audio) essences and data (or auxiliary) essences. This term is also frequently referred to simply as “material”
- Basic and extended UMIDs
 - A basic UMID which contains the minimum components necessary for unique identification
 - An extended UMID which attaches a packed metadata group (aka ‘source pack’) to the basic UMID
UMID Data Structure

<table>
<thead>
<tr>
<th>Universal label</th>
<th>Ext No.</th>
<th>Material Number</th>
<th>Time/Date</th>
<th>Spatial Co-ordinates</th>
<th>Country</th>
<th>Org</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 bytes</td>
<td>3 bytes</td>
<td>16 bytes</td>
<td>8 bytes</td>
<td>12 bytes</td>
<td>4 bytes</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Extended UMID (64 bytes)

Source Pack (32 bytes)

XML Transformations

- KLV is wonderful for machines
 - Very fast, low overhead, efficient, +++
- But not so good for humans...
 - Humans do not read ULs in the same way as textual words (well, most humans!)
- To serve the need for exchange of KLV metadata and the world of XML, the registers are adding symbol names specifically to provide a unique name for each entry
 - Schemas are required to make sense of the relationship between KLV coded items at the scheme level
 - Work progresses...
Summary

- All SMPTE work is now based on 16-byte Universal Labels for both identification and coding of data.
- This approach permits a consistency of coding for all data constructs - whether the data be simple elements, groups of elements or other data kinds.
- ULs are machine efficient but human antithetic
 - Mappings to human readable (XML) form now in progress
- All SMPTE register work is freely published by the registration authority at: www.smpte-ra.org
 - Currently the metadata and labels registers are listed