Skip to main content
Log in

Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2002

Abstract

The purpose of this paper is to present a mathematical model for the tumor vascularization theory of tumor growth proposed by Judah Folkman in the early 1970s and subsequently established experimentally by him and his coworkers [Ausprunk, D. H. and J. Folkman (1977) Migration and proliferation of endothelial cells in performed and newly formed blood vessels during tumor angiogenesis, Microvasc Res., 14, 53–65; Brem, S., B. A. Preis, ScD. Langer, B. A. Brem and J. Folkman (1997) Inhibition of neovascularization by an extract derived from vitreous Am. J. Opthalmol., 84, 323–328; Folkman, J. (1976) The vascularization of tumors, Sci. Am., 234, 58–64; Gimbrone, M. A. Jr, R. S. Cotran, S. B. Leapman and J. Folkman (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea, J. Nat. Cancer Inst., 52, 413–419]. In the simplest version of this model, an avascular tumor secretes a tumor growth factor (TGF) which is transported across an extracellular matrix (ECM) to a neighboring vasculature where it stimulates endothelial cells to produce a protease that acts as a catalyst to degrade the fibronectin of the capillary wall and the ECM. The endothelial cells then move up the TGF gradient back to the tumor, proliferating and forming a new capillary network. In the model presented here, we include two mechanisms for the action of angiostatin. In the first mechanism, substantiated experimentally, the angiostatin acts as a protease inhibitor. A second mechanism for the production of protease inhibitor from angiostatin by endothelial cells is proposed to be of Michaelis-Menten type. Mathematically, this mechanism includes the former as a subcase.

Our model is different from other attempts to model the process of tumor angiogenesis in that it focuses (1) on the biochemistry of the process at the level of the cell; (2) the movement of the cells is based on the theory of reinforced random walks; (3) standard transport equations for the diffusion of molecular species in porous media.

One consequence of our numerical simulations is that we obtain very good computational agreement with the time of the onset of vascularization and the rate of capillary tip growth observed in rabbit cornea experiments [Ausprunk, D. H. and J. Folkman (1977) Migration and proliferation of endothelial cells in performed and newly formed blood vessels during tumor angiogenesis, Microvasc Res., 14, 73–65; Brem, S., B. A. Preis, ScD. Langer, B. A. Brem and J. Folkman (1997) Inhibition of neovascularization by an extract derived from vitreous Am. J. Opthalmol., 84, 323–328; Folkman, J. (1976) The vascularization of tumors, Sci. Am., 234, 58–64; Gimbrone, M. A. Jr, R. S. Cotran, S. B. Leapman and J. Folkman (1974) Tumor growth and neovascularization: An experimental model using the rabbit cornea, J. Nat. Cancer Inst., 52, 413–419]. Furthermore, our numerical experiments agree with the observation that the tip of a growing capillary accelerates as it approaches the tumor [Folkman, J. (1976) The vascularization of tumors, Sci. Am., 234, 58–64].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1994). Molecular Biology of the Cell, 3rd edn, NY and London: Garland Pub. Inc.

    Google Scholar 

  • Anderson, R. (1985). Mammary gland, in Lactation, Bruce Larson (Ed.), Ames: Iowa State University Press, pp. 1–38.

    Google Scholar 

  • Ankoma-Sey, V., M. Matli, K. B. Chang, A. Lalazar, D. B. Donner, L. Wong, R. S. Warren and S. L. Friedman (1998). Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing. Oncogene 17, 115–121.

    Article  Google Scholar 

  • Araki, S., Y. Shimada, K. Kaji and H. Hayashi (1990). Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochem. Biophys. Res. Commun. 168, 1194–1200.

    Article  Google Scholar 

  • Ausprunk, D. H. and J. Folkman (1977). Migration and Proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65.

    Article  Google Scholar 

  • Balding, D. and D. L. McElwain (1985). A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73.

    Article  Google Scholar 

  • Baramova, E. N., K. Bajou, A. Remacle, C. L’Hoir, H. W. Krell, U. H. Weidle, A. Noel and J. M. Foidart (1997). Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett. 405, 157–162.

    Article  Google Scholar 

  • Blasi, F. (1993). Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays 15, 105–111.

    Article  Google Scholar 

  • Boffa, M. B., W. Wang, L. Bajzar and M. E. Nesheim (1998). Plasma and recombinant thrombin-activable fibrinolysis inhibitor (TAFI) and activated TAFI compared with respect to glycosylation, thrombin/thrombomodulin-dependent activation, thermal stability, and enzymatic properties. J. Biol. Chem. 273, 2127–2135.

    Article  Google Scholar 

  • Bourdoulous, S., G. Orend, D. A. MacKenna, R. Pasqualini and E. Ruoslahti (1998). Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J. Cell Biol. 143, 267–276.

    Article  Google Scholar 

  • Brem, H. and J. Folkman (1975). Inhibition of tumor angiogenesis mediated by cartilage. J. Exp. Med. 141, 427–439.

    Article  Google Scholar 

  • Brem, S., B. A. Preis, ScD. Langer, B. A. Brem and J. Folkman (1997). Inhibition of neovascularization by an extract derived from vitreous. Am. J. Opthalmol. 84, 323–328.

    Google Scholar 

  • Cahill, A., T. C. Jenkins and I. N. H. White (1993). Metabolism of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233) by purified DT-diaporase unde aerobic and anaerobic conditions. Biochem. Pharmacol. 45, 321–329.

    Article  Google Scholar 

  • Carmeliet, P. and R. K. Jain (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  Google Scholar 

  • Carney, D. H. and D. D. Cunningham (1977). Initiation of check cell division by trypsin action at the cell surface. Nature 268, 602–606.

    Article  Google Scholar 

  • Chaplain, M. A. J. and A. R. A. Anderson (1999). Modelling the growth and form of capillary networks, in On Growth and Form: Spatio-Temporal Pattern Formation in Biology, New York: Wiley, pp. 225–249.

    Google Scholar 

  • Chapman, H. A. (1997). Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr. Opin. Cell Biol. 9, 714–724.

    Article  Google Scholar 

  • Cho, A., L. Mitchell, D. Koopmans and B. L. Langille (1997). Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ. Res. 81, 328–337.

    Google Scholar 

  • Cliff, W. J. (1963). Observations on healing tissue: a combined light and electron microscopic investigation. Philos. Trans. R. Soc. London B 246, 305-ff.

    Google Scholar 

  • Crocker, D. J., T. M. Murad and J. C. Geer (1970). The role of the pericyte in wound healing: an ultrastructural study. Exp. Mol. Pathol 13, 51–65.

    Article  Google Scholar 

  • Curran, S. and G. I. Murray (1999). Matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 189, 300–308.

    Article  Google Scholar 

  • Davis, B. (1990). Reinforced random walks. Probability Theory Related Fields 84, 203–229.

    Article  MATH  Google Scholar 

  • Dekker, A., A. A. Poot, J. A. van Mourik, M. P. Workel, T. Beugeling, A. Bantjes, J. Feijen and W. G. van Aken (1991). Improved adhesion and proliferation of human endothelial cells on polyethylene precoated with monoclonal antibodies directed against cell membrane antigens and extracellular matrix proteins. Thromb. Haemost. 66, 715–724.

    Google Scholar 

  • Edelstein-Keshet, L. (1988). Mathematical Models in Biology, Boston: McGraw-Hill.

    MATH  Google Scholar 

  • Fields, G., S. J. Netzewl-Arnett, L. J. Windsor, J. A. Engler, H. Berkedal-Hansen and H. E. van Wart (1990). Proteolytic activities of human fibroblast collagenase; hydrolysis of a broad range of substrates at a single active site. Biochemistry 29, 6600–6677.

    Article  Google Scholar 

  • Folkman, J. (1976). The vascularization of tumors. Sci. Am. 234, 58–64.

    Article  Google Scholar 

  • Folkman, J. (1992). Angiogenesis-retrospect and outlook, in Angiogenesis: Key Principles-Science-Technology-Medicine, R. Steiner, P. B. Weisz and R. Langer (Eds), Basel: Birkhäuser.

    Google Scholar 

  • Frenzen, C. L. and P. K. Maini (1988). Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios. J. Math. Biol. 26, 689–703.

    MATH  MathSciNet  Google Scholar 

  • Gamble, J. R., L. J. Matthias, G. Meyer, P. Kaur, G. Russ, R. Faull, M. C. Berndt and M. A. Vadas (1993). Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell Biol. 121, 931–943.

    Article  Google Scholar 

  • Gengrinovitch, S., B. Berman, G. David, L. Witte, G. Neufeld and D. Ron (1999). Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J. Biol. Chem. 274, 10816–10822.

    Google Scholar 

  • Gimbrone, M. A. Jr., R. S. Cotran, S. B. Leapman and J. Folkman (1974). Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413–419.

    Google Scholar 

  • Gordon, S. R. and J. DeMoss (1999). Exposure to lysosomotropic amines and protease inhibitors retard corneal endothelial cell migration along the natural basement membrane during wound repair. Exp. Cell Res. 246, 233–242.

    Article  Google Scholar 

  • Gospodarowicz, D., G. Greenburg, H. Bialecki and B. R. Zetter (1978). Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro 14, 85–118.

    Google Scholar 

  • Haas, T. L. and B. R. Duling (1997). Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc Res. 53, 113–120.

    Article  Google Scholar 

  • Han, Z. C. and Y. Liu (1999). Angiogenesis: state of the art. Int. J. Hematol. 70, 68–82.

    Google Scholar 

  • Hanahan, D. and J. Folkman (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    Article  Google Scholar 

  • Hicks, K. O., Y. Fleming, B. G. Siim, C. J. Koch and W. R. Wilson (1998). Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model. Int. J. Radiat. Oncol. Biol. Phy. 42, 641–649.

    Article  Google Scholar 

  • Hiraoka, N., E. Allen, I. J. Apel, M. R. Gyetko and S. J. Weiss (1998). Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377.

    Article  Google Scholar 

  • Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos and S. J. Wiegand (1998). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  Google Scholar 

  • Jaffee, E. A. and D. F. Mosher (1978). Synthesis of fibronectin by cultured human endothelial cells. J. Exp. Med. 147, 1779–1791.

    Article  Google Scholar 

  • Kabelic, T., S. Ganbisa, B. Glaser and L. A. Liotta (1983). Basement membrane collagen: degradation by migrating endothelial cells. Science 221, 281–283.

    Google Scholar 

  • Kendall, R. L., R. Z. Rutledge, X. Mao, A. J. Tebben, R. W. Hungate and K. A. Thomas (1999). Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J. Biol. Chem. 274, 6453–6460.

    Article  Google Scholar 

  • Kuwano, M., S. Ushiro, M. Ryuto, K. Samoto, H. Izumi, K. Ito, T. Abe, T. Nakamura, M. Ono and K. Kohno (1994). Regulation of angiogenesis by growth factors. GANN Monograph on Cancer Research 42, 113–125.

    Google Scholar 

  • Lagelund, T. D. and P. A. Low (1987). A mathematical simulation of oxygen delivery in rat peripheral nerve. Microvascular Research 34, 211–222.

    Article  Google Scholar 

  • Landau, L. D. and E. M. Lifschitz (1982). Course of Theoretical Physics, Vol. 6, Fluid Mechanics, Oxford, UK: Pergamon Press.

    Google Scholar 

  • Levine, H. A. and B. D. Sleeman (1997). A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57, 683–730.

    Article  MATH  MathSciNet  Google Scholar 

  • Levine, H. A., B. D. Sleeman and M. Nilsen-Hamilton. Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. (in press).

  • Levine, H. A., B. D. Sleeman and M. Nilsen-Hamilton. A mathematical model for the roles of plasminogen activators, collagenases and heparanase on tumor angiogenesis, (in preparation).

  • Levine, H. A., B. D. Sleeman and M. Nilsen-Hamilton (2000). A Mathematical model for the roles of pericytes and macrophages in the onset of angiogenesis: I. The role of protease inhibitors in preventing angiogenesis. Math. Biosci. 168, 77–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Librach, C. L., Z. Werb, M. L. Fitzgerald, K. Chiu, N. M. Corwin, R. A. Esteves, D. Grobelny, R. Galardy, C. H. Damsky and S. J. Fisher (1999). 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol. 189, 300–308.

    Google Scholar 

  • Mandriota, S. J., G. Seghezzi, J. D. Vassalli, N. Ferrara, S. Wasi, R. Mazzieri, P. Mignatti and M. S. Pepper (1995). Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J. Biol. Chem. 270, 9709–9716.

    Article  Google Scholar 

  • Moerman, D. G. (1999). A metalloprotease prepares the way. Curr. Biol. 9, R701–R703.

    Article  Google Scholar 

  • Morimoto, K., H. Mishima, T. Nishida and T. Otori (1993). Role of urokinase type plasminogen activator (u-PA) in corneal epithelial migration. Thromb. Haemost. 69, 387–391.

    Google Scholar 

  • Murphy, G. and J. Gavrilovic (1999). Proteolysis and cell migration: creating a path? Curr. Opin. Cell Biol. 11, 614–621.

    Article  Google Scholar 

  • Murray, J. D. (1989). Mathematical Biology, Biomathematics Texts, Springer-Verlag.

  • Nelsen, N. J. (1998). Inhibitors of angiogenesis enter phase III testing. J. Natl. Cancer Inst. 90, 960–962.

    Article  Google Scholar 

  • Nerem, R. M., M. J. Levesque and J. F. Cornhill (1981). Vasuclar endothelial cell morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103, 172–176.

    Article  Google Scholar 

  • Nicosia, R. F., E. Bonanno and M. Smith (1993). Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J. Cell Physiol. 154, 654–661.

    Article  Google Scholar 

  • Olofsson, B. et al. (1998). Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 95, 11709–11714.

    Google Scholar 

  • Orme, M. E. and M. A. J. Chaplain (1996). A mathematical model of the first steps of tumour related angiogenesis: capillary sprout formation and secondary branching. I.M.A. J. Math. Appl. Med. Biol. 13, 73–98.

    MATH  Google Scholar 

  • Orme, M. E. and M. A. J. Chaplain (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. I.M.A. J. Math. Appl. Med. Biol. 14, 189–205.

    MATH  Google Scholar 

  • Othmer, H. G. and A. Stevens (1997). Aggregation, blow up and collapse: the ABC’s of taxis and reinforced random walks. SIAM J. Appl. Math. 51.

  • Pamuk, S. (May, 2000). Two dimensional models of tumor angiogenesis, PhD Thesis, Iowa State University.

  • Paweletz, N. and M. Knierim (1989). Tumor related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.

    Google Scholar 

  • Rakusan, K. (1995). Coronary Angiogenesis. From morphology to molecular biology and back. Ann. Ny Acad. Sci. 752, 257–266.

    Google Scholar 

  • Roberts, J. M. and J. V. Forrester (1990). Factors affecting the migration and growth of endothelial cells from microvessels of bovine retina. Exp. Eye Res. 50, 165–172.

    Article  Google Scholar 

  • Rochefort, H., M. Garcia, M. Glondu, V. Laurent, E. Liaudet, J. M. Rey and P. Roger (2000). Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin. Chim. Acta. 291, 85–118.

    Article  Google Scholar 

  • Saksela, O. (1985). Plasminogen activation and regulation of pericellular proteolysis. Biochim. Biophys. Acta 823, 35–65.

    Google Scholar 

  • Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto and M. Seiki (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–65.

    Article  Google Scholar 

  • Schleef, R. R. and C. R. Birdwell (1982). The effect of proteases on endothelial cell migration in vitro. Exp. Cell Res. 141, 503–508.

    Article  Google Scholar 

  • Schoefl, G. I. (1963). Studies on inflammation. III. Growing capillaries: their structure and permeability. Virchows Arch. Pathol. Anat. 337, 97-ff.

    Google Scholar 

  • Schoefl, G. I. and G. Majno (1964). Regeneration of blood vessels in wound healing. Adv. Biol. Skin 5, 173-ff.

    Google Scholar 

  • Schor, A. M., A. E. Canfield, A. B. Sutton, T. D. Allen, P. Sloan and S. L. Schor (1992). The behavior of pericytes in vitro: relevance to angiogenesis and differentiation, in Angiogenesis: Key Principles-Science-Technology-Medicine, R. Steiner, P. B. Weisz and R. Langer (Eds), Basel: Birkhäuser.

    Google Scholar 

  • Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A. and M. Slemrod (1989). The quasi steady state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.

    Article  MATH  MathSciNet  Google Scholar 

  • Sethian, J. A. (1996). Level Set Methods and Fast Marching Methods, Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Sherratt, J. A. and J. D. Murray (1990). Models of epidermal wound healing. Proc. R. Soc. Lond. B. 241, 29–36.

    Google Scholar 

  • Sherratt, J. A., A. J. Perumpanani and M. R. Owen (1999). Pattern formation in cancer, in On Growth and Form: Spatio-Temporal Pattern Formation in Biology, New York: Wiley, pp. 47–73.

    Google Scholar 

  • Sholley, M. M., G. P. Ferguson, H. R. Seibel, J. L. Montour and J. D. Wilson (1984). Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51, 624–634.

    Google Scholar 

  • Sleeman, B. D. (1996). Solid tumor growth: a case study in mathematical biology. Nonlin. Math. Appl., Ed. P. J. Aston, C.U. P 237–256.

  • Sleeman, B. D. and I. P. Wallis (2001). Tumor induced angiogenesis as a reinforced random walk: modelling capillary network formation without endothelial cell proliferation, Math. Copmp. Mod., (in press).

  • Soldi, R., S. Mitola, M. Strasly, P. Defilippi, G. Tarone and F. Bussolino (1999). Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18, 882–892.

    Article  Google Scholar 

  • Stack, M. S., S. Gately, L. M. Bafetti, J. Enghild, J. Soff and G. A. Soff (1999). Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J. 340, 77–84.

    Article  Google Scholar 

  • Stokes, C. L. and D. A. Lauffenburger (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Takahashi, K., H. C. Kwaan, E. Koh and M. Tanabe (1992). Enzymatic properties of the phosphorylated urokinase-type plasminogen activator isolated from a human carcinomatous cell line. Biochem. Biophys. Res. Commun. 182, 1473–1481.

    Article  Google Scholar 

  • Terman, B. I., M. Dougher-Vermazen, M. E. Carrion, D. Dimitrov, D. C. Armellino, D. Gospodarowicz and P. Bohlen (1992). Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586.

    Article  Google Scholar 

  • Terranova, V. P., R. DiFlorio, R. M. Lyall, S. Hic, R. Friesel and T. Maciag (1985). Endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell. Biol. 101, 2330–2334.

    Article  Google Scholar 

  • Thews, G. (1960). Dei sauerstoffdiffusion im gehirn: Ein beitrag tur frage der Saurstoffversorung der organe. Plugers Arch. 271, 197–226.

    Article  Google Scholar 

  • Unemori, E. N., N. Ferrara, E. A. Bauer and E. P. Amento (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell Physiol. 153, 557–562.

    Article  Google Scholar 

  • Waltenberger, J., L. Claesson-Welsh, A. Siegbahn, M. Shibuya and C.H. Heldin (1994). Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial cell growth factor. J. Biol. Chem. 269, 26988–26995.

    Google Scholar 

  • Warren, B. A. (1970). The ultrastructure of the microcirculation at the advancing edge of Walker256 carcinoma. Microvasc. Res. 2, 443–453.

    Article  Google Scholar 

  • Yamada, K. M. and K. Olden (1978). Fibronectins—adhesive glycoproteins of cell surface and blood. Nature 275, 179–184.

    Article  Google Scholar 

  • Zhou, Z., S. S. Apte, R. Soininen, R. Cao, G. Y. Baaklini, R. W. Rauser, J. Wang, Y. Cao and K. Tryggvason (2000). Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl. Acad. Sci. U.S.A. 97, 4052–4057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1006/bulm.2002.0294.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, H.A., Pamuk, S., Sleeman, B.D. et al. Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma. Bull. Math. Biol. 63, 801–863 (2001). https://doi.org/10.1006/bulm.2001.0240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0240

Keywords

Navigation