Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T03:50:52.270Z Has data issue: false hasContentIssue false

Sea-Surface Temperatures and the History of Monsoon Upwelling in the Northwest Arabian Sea during the Last 500,000 Years

Published online by Cambridge University Press:  20 January 2017

Kay-Christian Emeis
Affiliation:
Institute for Baltic Sea Research, Warnemuende, Germany
David M. Anderson
Affiliation:
NOAA Paleoclimatology Program, Boulder, Colorado
Heidi Doose
Affiliation:
Geologisch-Paläontologisches Institut, Universität Kiel, Kiel, Germany
Dick Kroon
Affiliation:
Grant Institute of Geology and Geophysics, University of Edinburgh, Edinburgh, United Kingdom
Detlef Schulz-Bull
Affiliation:
Institut für Meereskunde, Kiel, Germany

Abstract

Arabian Sea sediments record changes in the upwelling system off Arabia, which is driven by the monsoon circulation system over the NW Indian Ocean. In accordance with climate models, and differing from other large upwelling areas of the tropical ocean, a 500,000-yr record of productivity at ODP Site 723 shows consistently stronger upwelling during interglaciations than during glaciations. Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index (UK′37) are high (up to 27°C) during interglaciations and low (22-24°C) during glaciations, indicating a glacial-interglacial temperature change of >3°C in spite of the dampening effect of enhanced or weakened upwelling. The increased productivity is attributed to stronger monsoon winds during interglacial times relative to glacial times, whereas the difference in SSTs must be unrelated to upwelling and to the summer monsoon intensity. The winter (NE) monsoon was more effective in cooling the Arabian Sea during glaciations then it is now.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. M. Brock, J. C., and Prell, W, L. (1992). Physical upwelling processes, upper ocean environment and the sediment record of the southwest monsoon. In “Upwelling Systems: Evolution since the Early Miocene” (Summerhayes, C. P. Prell, W. L., and Emeis, K.-C., Eds.), pp. 121129, The Geological Society, London.Google Scholar
Anderson, D. M., and Prell, W. L. (1993). A 300 KYR record of upwelling off Oman during the late Quaternary : Evidence of the Asian southwest monsoon. Paleoceanography 8, 193208.CrossRefGoogle Scholar
Anderson, D. M., and Webb, R. S. (1994). Ice-age tropics revisited. Nature 367, 2324.Google Scholar
Brassell, S. C. Eglinton, G. Marlowe, I. T. Pflaumann, U., and Samthein, M. (1986). Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129133.Google Scholar
Brock, J. C. McClain, C. R. Anderson, D. M. Prell, W. L., and Hay, W. W. (1992). Southwest monsoon circulation and environments of recent planktonic foraminifera in the northwestern Arabian Sea. Paleoceanography 7, 799813.Google Scholar
Clemens, S. C. Prell, W. Murray, D. Shimmield, G., and Weedon, G. D.. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720725.Google Scholar
CLIMAP. (1981). “Seasonal Reconstructions of the Earth’s Surface at the Last Glacial Maximum.” GSA Map and Chart Series MC-36. The Geological Society of America, Boulder, CO.Google Scholar
CLIMAP. (1984). The last interglacial ocean. Quaternary Research 21, 123224.Google Scholar
Emeis, K.-C. Doose, H. Mix, A., and Schulz-Bull, D. (in press). Alkenone sea-surface temperatures and carbon burial at ODP Site 846 (eastern Equatorial Pacific): The last 1.3 million years. In “Proceedings ODP, Scientific Results, 138” (Mayer, L. Pisias, N. et a1., Eds.). Ocean Drilling Program, College Station.Google Scholar
Findlater, J. (1974). The low-level cross-equatorial air current of the western Indian Ocean during the Northern Summer. Weather 29, 411416.Google Scholar
Ittekkot, V. Haake, B. Bartsch, M. Nait, R. R., and Ramaswamy, V. E.. Organic carbon removal in the sea: the continental connection. In “Upwelling Systems: Evolution since the Early Miocene.” (Summerhayes, C. P. Prell, W. L., and Emeis, K.-C., Eds.), pp. 167176. The Geological Society, London.Google Scholar
Kuhle, M. (1986). Die Vergletscherung Tibets und die Entstehung von Eiszeiten. Spektrum der Wissenschaft (September) 4254.Google Scholar
Luther, M. E. O’Brian, J. J., and Prell, W. L. (1990). Variability in upwelling fields in the northwestern Indian Ocean. 1. Model experiments for the past 18,000 years. Paleoceanography 5, 433446.Google Scholar
Muller, P. J., and Suess, E, (1979). Productivity, sedimentation rate, and sedimentary organic carbon in the ocean. 1. Organic carbon preservation. Deep-Sea Research A 26, 13471362.CrossRefGoogle Scholar
Niitsuma, N. Oba, T., and Okada, M. (1991). Oxygen and carbon isotope stratigraphy at Site 723. Oman margin. In “Proceedings ODP, Scientific Results, 117” (Prell, W. L. Niitsuma, N. Emeis, K.-C., and Meyers, P. A., Eds.), pp. 321341. Ocean Drilling Program, College Station.Google Scholar
Owens, N. J. P. Bur kill, P. H. Mantoura, R. F. C. Woodward, E. M. S. Bellan, I. A. Aiken, J. Howland, R. J. M., and Llewellyn, C. A. (1993). Size fractionated primary production and nitrogen assimilation in the NW Indian Ocean. Deep-Sea Research II 40, 697709.CrossRefGoogle Scholar
Paropkari, A. L. Prakash Babu, C., and Mascarhenas, A. (1992). A critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Marine Geology , 213226.CrossRefGoogle Scholar
Prahl, F, G. Muehlhausen, A., and Zahnle, D. (1988). Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimics Acta 52, 23032310.Google Scholar
Prell, W. D. Niitsuma, N., et al. (1989). “Proceedings ODP, Initial Repts, 138.” Ocean Drilling Program, College Station.Google Scholar
Prell, W. L., and Kutzbach, I. E. (1987). Monsoon variability over the past 150,000 years. Journal of Geophysical Research 92, 84118425,Google Scholar
Prell, W. L. Marvil, R. E., and Luther, M. E. (1990). Variability in upwelling fields in the northwestern Indian Ocean—2. Data-model comparison at 9000 years B.P. Paleoceanography 5, 447457.Google Scholar
Rostek, F. Ruhland, G. Bassinot, F. C. Muller, P. J. Labeyrie, L. D. Lancelot, Y., and Bard, E. (1993). Reconstructing sea surface temperature and salinity using Sl80 and alkenone records. Nature 364, 319321.Google Scholar
Sikes, E. L. Farrington, J. W., and Keigwin, L, D, (1991). Use of the alkenone unsaturation ratio Uk37 to determine past sea surface temperatures: core-top SST calibrations and methodology considerations. Earth and Planetary Science Letters 104, 3647.CrossRefGoogle Scholar
Sirocko, F. Samthein, M. Erlenkeuser, H. Lange, H. Arnold, M., and Duplessy, J. C. (1993). Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322324.Google Scholar
Vogelsang, E. (1990). “Palao-Ozeanographie des Europaischen Nordmeeres an Hand stabiler Kohlenstoffund Sauerstoffisotope.” Unpublished Ph.D. Dissertation Thesis, University Kiel.Google Scholar
Wyrtki, K. (1973). Physical oceanography of the Indian Ocean. In “The Biology of the Indian Ocean.” (Zeitschel, B., and Gerlach, S. A., Eds.) pp. 1836. Springer-Verlag, New York.Google Scholar