Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T12:21:10.531Z Has data issue: false hasContentIssue false

Ice-Volume Forcing of East Asian Winter Monsoon Variations in the Past 800,000 Years

Published online by Cambridge University Press:  20 January 2017

Zhongli Ding
Affiliation:
Institute of Geology, Chinese Academy of Sciences, Beijing 100029, China
Tungsheng Liu
Affiliation:
Institute of Geology, Chinese Academy of Sciences, Beijing 100029, China
Nat W. Rutter
Affiliation:
Department of Geology, University of Alberta, Edmonton, Canada T6G 2E3
Zhiwei Yu
Affiliation:
Department of Geology, China Mining and Technology University, Xuzhou 221008, China
Zhengtang Guo
Affiliation:
Institute of Geology, Chinese Academy of Sciences, Beijing 100029, China
Rixiang Zhu
Affiliation:
Institute of Geophysics, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Particle-size measurements of some typical loess-soil samples taken in different localities of the Chinese Loess Plateau demonstrate that the grain size ratio of <2 μm/>10 μm (%) can be used as an indicator of variations in intensity of the East Asian winter monsoon winds. Grain-size curves of the Baoji and Weinan sections show that this proxy indicator is very sensitive to loess-soil alterations. Analytical results also suggest that during soil-forming periods, eolian dust accumulation was still substantial and, hence, loess deposition can be regarded as a nearly continuous process during the Quaternary period. In this study we compared the Baoji grain-size time series with the SPECMAP marine isotope record with the objective of elucidating the dynamic linkage between changes in global ice volume and the winter monsoon circulation. Both records show good agreement at both time and frequency domains. In particular, the winter monsoon variations are also dominated by a 100,000 yr period over the past 800,000 yr. It is thus inferred that direct local insolation forcing could be less important in driving the East Asian winter monsoon variability, and, alternatively, variations in glacial-age boundary conditions may have played a key role in modulating and pacing its strength and timing.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z. S. Kukla, G. Porter, S. C., and Xiao, J. L. (1991a). Late Quaternary dust flow on the Chinese Loess Plateau. Catena 18 , 125132.Google Scholar
An, Z. S. Kukla, G. Porter, S. C., and Xiao, J. L. (1991b). Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36 , 2936.Google Scholar
Baksi, A. K. Hsu, V. McWilliams, M. O., and Farrar, E. (1992). 40Ar/30-Ar dating of the Brunhes-Matuyama geomagnetic reversal. Science 256 , 356357.Google Scholar
Bartholomew, J, C. Geelan, P. J. M. Lewis, H, A. C. Middleton, P., and Winkleman, B., Eds. (1980). “The Times Atlas of the World, Comprehensive Edition.” London Times Books, London.Google Scholar
Berger, A. (1978). Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quaternary Research 9 , 139167.Google Scholar
Berger, A. (1984). Accuracy and frequency stability of the Earth’s orbital elements during the Quaternary. In “Milankovitch and Climate” (Berger, A. Imbrie, J. Hays, J. Kukla, G., and Saltzman, B., Eds.), pp. 340. Reidel, Dordrecht.Google Scholar
Berger, A., and Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10 , 297317.Google Scholar
Broecker, W. (1984). Terminations. In “Milankovitch and Climate” (Berger, A. Imbrie, J. Hays, J. Kukla, G., and Saltzman, B., Eds.), pp. 687698. Reidel, Dordrecht.CrossRefGoogle Scholar
Chang, C. P., and Lau, K. M. (1980). Northeasterly cold surges and near- equatorial disturbances over the winter MONEX during December 1974, Part II: Planetary scale aspects. Monthly Weather Reviews 108 , 298312.Google Scholar
Chen, L. X. Zhu, J. G., and Lou, H. B. (1991). “Monsoons over East Asia.” Meteorology Press, Beijing. [In Chinese] Google Scholar
Chu, P. S., and Park, S. U. (1984), Regional circulation characteristics associated with a cold surge event over East Asia during winter MONEX. Monthly Weather Reviews 112 , 955965.Google Scholar
Clemens, S. Prell, W. Murray, D. Shimmield, G., and Weedon, G. (1991). Forcing mechanisms of the Indian ocean monsoon. Nature 353 , 720725.Google Scholar
CLIMAP Project Members (1976). The surface of the ice-age earth. Science 191 , 11311137.Google Scholar
CLIMAP Project Members (1984). The last interglacial ocean. Quaternary Research 21 , 123224.Google Scholar
COHMAP members (1988). Climatic changes of the last 18,000 years: Observations and model simulations. Science 241 , 10431052.Google Scholar
Denton, G. H., and Hughes, T. J. (1981). The Arctic ice sheet: An outrageous hypothesis. In “The Last Great Ice Sheet” (Denton, G. H, and Hughes, T. J., Eds.), pp. 440467. Wiley, New York.Google Scholar
Ding, Z. Rutter, N. W. Han, J., and Liu, T. (1992). A coupled environmental system formed at about 2.5 Ma over eastern Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 94 , 223242.Google Scholar
Ding, Z. Rutter, N. W., and Liu, T. (1993). Pedostratigraphy of Chinese loess deposits and climatic cycles in the last 2.5 Ma. Catena 20 , 7391.Google Scholar
Ding, Z. Yu, Z. Rutter, N. W., and Liu, T. (1994). Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews 13 , 3970.Google Scholar
Duplessy, J.-C. Shackleton, N. J. Fairbanks, R. G. Labeyrie, L. Oppo, D. W., and Kallel, N. (1988). Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleocenography 3 , 343360.Google Scholar
Hays, J. D. (1978). A review of the late Quaternary climatic history of the Antarctic seas. In “Antarctic Glacial History and World Palaeoenvironments” (Bakker, E. M. Z., Ed.), pp. 5771. Balkema, Rotterdam.Google Scholar
Hays, J. D. Imbrie, J., and Shackleton, N. J. (1976). Variations in the earth’s orbit: Pacemaker of the ice age. Science 194 , 11211132.Google Scholar
Howard, W., and Prell, W. L. (1984). Comparison of radiolarian and foraminiferal palaeoecology in the southern Indian Ocean: New evidence for interhemispheric timing of climatic change. Quaternary Research 21 , 244263.Google Scholar
Imbrie, J. Berger, A. Boyle, E. A. Clemens, S. C. Duffy, A. Howard, W. R. Kukla, G. Kutzbach, J. Martinson, D. G. McIntyre, A. Mix, A. C. Molfino, B. Morley, J.J. Peterson, L. C. Pisias, N. G. Prell, W. L. Raymo, M. E. Shackleton, N. J., and Toggweiler, J. R. (1993). On the structure and origin of major glaciation cycles, 2: The 100,000-year cycle. Paleoceanography 8 , 699735.Google Scholar
Imbrie, J. Boyle, E. A. Clemens, S. C. Duddy, A. Howard, W. R. Kukla, G. Kutzbach, J. Martinson, D. G. McIntyre, A. Mix, A. C. Molfino, B. Morley, J. J. Peterson, L. C. Pisias, N. G. Prell, W. L. Raymo, M. E. Shackleton, N. J., and Toggweiler, J. R. (1992). On the structure and origin of major glaciation cycles, 1: Linear response to Milankovitch forcing. Paleoceanography 1 , 701736.Google Scholar
Imbrie, J. Hays, J. D. Martinson, D. B. McIntyre, A. Mix, A. C. Morley, J. J. Pisias, N. G. Prell, W. L., and Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record. In “Milankovitch and Climate” (Berger, A. Imbrie, J. Hays, J. Kukla, G., and Saltzman, B., Eds,), pp. 269305. Reidel, Dordrecht.Google Scholar
Kukla, G. (1987). Loess stratigraphy in central China. Quaternary Science Reviews 6 , 191219.Google Scholar
Kukla, G., and An, Z. (1989). Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 72 , 203255.Google Scholar
Kutzbach, J. E., and Wright, H. E. (1985). Simulation of the climate of 18,000 years B.P.: Results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quaternary Science Reviews 4 , 147187.Google Scholar
Lambeck, K. (1995). Constraints on the late Weichselian ice sheet over the Barents sea from observations of raised shorelines. Quaternary Science Reviews 14 , 116.Google Scholar
Liu, T. S., et al. (unnamed) (1965). “The Loess Deposits in China.” Science Press, Beijing. [In Chinese] Google Scholar
Liu, T. S., et al. (unnamed) (1966). “Composition and Texture of Loess.” Science Press, Beijing. [In Chinese] Google Scholar
Liu, T. S., et al. (unnamed) (1985). “Loess and the Environment.” Science Press, Beijing.Google Scholar
Liu, T. S. Gu, X. E. An, Z. S., and Fan, X. F. (1981). The dust fall in Beijing, China on April 18, 1980. Geological Society of America, Special Paper 186 , 149157.Google Scholar
Liu, T. S. Chen, M. Y., and Li, X. F, (1982). A satellite images study on the dust storm at Beijing on April 17-21, 1980. In “Quaternary Geology and Environment of China” (Liu, T. S., Ed.), pp. 4952. China Ocean Press, Beijing.Google Scholar
Liu, T. S. Ding, Z. L. Chen, M. Y., and An, Z. S. (1989). The global surface energy system and the geological role of wind stress. Quaternary International 2 , 4354.Google Scholar
Manabe, S., and Broccoli, A. J. (1985). The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research 90 , 21672190.Google Scholar
Milankovitch, M. M. (1941). “Kanon der Erdestrahlung.” Beogard, Koninglich Serbische Akademie. (English translation: “Canon of Insolation and the Ice Age Problem,” by the Israel Program for Scientific Translation and published for the U.S. Department of Commerce and the National Science Foundation.) Porter, S. C. An, Z. S., and Zheng, H. B. (1992). Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan. Quaternary Research 38 , 157169.Google Scholar
Ruddiman, W. F. (1991). Informal reflections on some unsolved problems in orbital-scale climate cycles. In “Global Change of the Past” (Bradley, R. S., Ed.), pp. 357363. Boulder, CO.Google Scholar
Ruddiman, W. F., and McIntyre, A. (1984). An evaluation of ocean-climate theories on the North Atlantic. In “Milankovitch and Climate” (Berger, A. Imbrie, J. Hays, J. Kukla, G., and Saltzman, B., Eds.), pp. 671686. Reidel, Dordrecht.Google Scholar
Ruddiman, W, F. Raymo, M. E. Martinson, D. G. Clement, B. M., and Backman, J. (1989a). Pleistocene evolution: Northern Hemisphere ice sheets and the North Atlantic Ocean. Paleoceanography 4 , 353412.Google Scholar
Ruddiman, W. F. Samthein, M. Backman, J. Baldauf, J. G. Curry, W. Dupont, L. M. Janecek, T. Pokras, E. M. Raymo, M. E. Stabell, B. Stein, R., and Tiedemann, R, (1989b). Late Miocene to Pleistocene evolution of climate in Africa and the low-latitude Atlantic: Overview of Leg 108 results. Proceedings of the Ocean Drilling Program, Scientific Results 108 , 463484.Google Scholar
Rutter, N. W. Ding, Z. L. Evans, M. E., and Liu, T. S. (1990). Baoji-type pedostratigraphic section, Loess Plateau, north-central China. Quaternary Science Reviews 10 , 122.Google Scholar
Rutter, N. W., and Ding, Z. (1993). Paleoclimates and monsoon variations interpreted from micromorphogenic features of the Baoji paleosols, China. Quaternary Science Reviews 12 , 853-862,CrossRefGoogle Scholar
Shackleton, N. J. Berger, A., and Peltier, W. R, (1990). An alternative astronomical calibration of the lower Pleistocene time scale based on ODP site 677. Philosophical Transactions of the Royal Society, Edinburgh 81 , 251261.Google Scholar
Stuiver, M. Denton, G. H. Hughes, T. J., and Fastook, J. L. (1981). History of marine ice sheet in West Antarctica: A working hypothesis. In “The Last Great Ice Sheets” (Denton, G. H. and Hughes, T. J., Eds.), pp. 319439, Wiley, New York.Google Scholar
Tao, S. Y., and Chen, L. X. (1957). The atmospheric structure over the Asian continent in summer. Bulletin of Meteorology 28 , 234246. [In Chinese] Google Scholar
Tauxe, L. Deino, A. D. Behrensmeyer, A. K., and Potts, R, (1992). Pinning down the Brunhes/Matuyama and upper Jaramitlo boundaries: A reconciliation of orbital and isotopic time scales. Earth and Planetary Science Letters 109 , 561572.Google Scholar
Thierstein, H. R. Geitzenauer, K. R. Molfino, B., and Shackleton, N. J. (1977). Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotope. Geology 5 , 400404.Google Scholar
Trewartha, G. T. (1981). “The Earth’s Problem Climate.” Univ. Wisconsin Press, Madison.Google Scholar
Trewartha, G. T., and Horn, L. H. (1980). “An Introduction to Climate.” McGraw-Hill, New York.Google Scholar
Williams, M. A. J., Dunkerley, D. L. De Deckker, P. Kershaw, D. A. P., and Stokes, T. (1993). “Quaternary Environments.” Arnold, Sevenonks.Google Scholar
Xiao, J. L. Porter, S. C. An, Z. S. Kumai, H., and Yoshikawa, S. (1995). Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr. Quaternary Research 43 , 2229.Google Scholar
Zhang, D. (1982). An analysis on dust storms in historical time Chinese Science Bulletin 27 , 294297.Google Scholar
Zhang, D. (1984). Synoptic-climatic studies of dust fall in China since historical times. Scientia Sinica (Series B) 17 . 825836.Google Scholar
Zhang, J. C., and Lin, Z. G. (1987). “Climate in China.” Meteorology Press, Beijing. [In Chinese].Google Scholar