Skip to main content

Laminar Boundary-layer Theory: A 20th Century Paradox?

  • Conference paper
Mechanics for a New Mellennium

Abstract

Boundary-layer theory is crucial in understanding why certain phenomena occur. We start by reviewing steady and unsteady separation from the viewpoint of classical non-interactive boundary-layer theory. Next, interactive boundary-layer theory is introduced in the context of unsteady separation. This discussion leads onto a consideration of large-Reynolds-number asymptotic instability theory. We emphasize that a key aspect of boundary-layer theory is the development of singularities in solutions of the governing equations. This feature, when combined with the pervasiveness of instabilities, often forces smaller and smaller scales to be considered. Such a cascade of scales can limit the quantitative usefulness of solutions. We also note that classical boundary-layer theory may not always be the large-Reynolds-number limit of the Navier-Stokes equations, because of the possible amplification of short-scale modes, which are initially exponentially small, by a Rayleigh instability mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blasius, H. 1908. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeitschrift für Mathematik und Physik 56(1), 1–37.

    Google Scholar 

  • Brinkman, K. W., and J. D. A. Walker. 2001. Instability in a viscous flow driven by streamwise vortices. Journal of Fluid Mechanics, in press.

    Google Scholar 

  • Carrier, G. F., M. Krook, and C. E. Pearson. 1983. Functions of a Complex Variable: Theory and Technique. Ithaca, N.Y.: Hod Books.

    MATH  Google Scholar 

  • Cassel, K. W., F. T. Smith, and J. D. A. Walker, 1996. The onset of instability in unsteady boundary-layer separation. Journal of Fluid Mechanics 315, 223–256.

    Article  ADS  MATH  Google Scholar 

  • Chernyshenko, S. 1988. The asymptotic form of the stationary separated circumference of a body at high Reynolds number. Prikladnaia Matematika i Mekhanika 52(6), 958–966.

    MathSciNet  MATH  Google Scholar 

  • Chernyshenko, S. 1998. Asymptotic theory of global separation. Applied Mechanics Reviews 9, 523–536.

    Article  Google Scholar 

  • Coutanceau, M., and R. Bouard. 1977. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow. Journal of Fluid Mechanics 79, 257–272.

    Article  ADS  Google Scholar 

  • Cowley, S. J., and X. Wu. 1994. Asymptotic approaches to transition modelling. In Progress in Transition Modelling, AGARD Report 793, Chap. 3, 1–38.

    Google Scholar 

  • Craik, A. D. D. 1971. Non-linear resonant instability in boundary layers. Journal of Fluid Mechanics 50, 393–413.

    Article  MATH  ADS  Google Scholar 

  • van Dommelen, L. L. 1981. Unsteady boundary-layer separation. Ph.D. thesis, Cornell University, Ithaca, N.Y.

    Google Scholar 

  • van Dommelen, L. L., and S. F. Shen, 1980. The spontaneous generation of the singularity in a separating laminar boundary layer. Journal of Computational Physics 38, 125–140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • van Dommelen, L. L., and S. J. Cowley. 1990. On the Lagrangian description of unsteady boundary layer separation. Part 1. General theory. Journal of Fluid Mechanics 210, 593–626.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Elliott, J. W., S. J. Cowley, and F. T. Smith. 1983. Breakdown of boundary layers: (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophysical and Astrophysical Fluid Dynamics 25, 77–138.

    Article  MathSciNet  ADS  Google Scholar 

  • Fornberg, B. 1985. Steady viscous flow past a circular cylinder up to Reynolds number 600. Journal of Computational Physics 61(2), 297–320.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Goldstein, M. E. 1985. Scattering of acoustic-waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. Journal of Fluid Mechanics 154, 509–529.

    Article  MATH  ADS  Google Scholar 

  • Goldstein, M. E. 1995. The role of nonlinear critical layers in boundary-layer transition. Philosophical Transactions of the Royal Society of London 352, 425–442.

    MATH  ADS  Google Scholar 

  • Goldstein, M. E., and L. S. Hultgren. 1987. A note on the generation of Tollmien-Schlichting waves by sudden surface-curvature change. Journal of Fluid Mechanics 181, 519–525.

    Article  ADS  MATH  Google Scholar 

  • Goldstein, M. E., and S. S. Lee. 1992. Fully coupled resonant-triad interaction in an adverse-pressure-gradient boundary layer. Journal of Fluid Mechanics 245, 523–551.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Goldstein, S. 1948. On laminar boundary-layer flow near a position of separation. Quarterly Journal of Mechanics and Applied Mathematics 1(1), 43–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, S., and L. N. Rosenhead. 1936. Boundary-layer growth. Proceedings of the Cambridge Philosophical Society 32, 392–401.

    Article  MATH  Google Scholar 

  • Hall, P. 1990. Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika 37, 151–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., and F. T. Smith. 1989. Nonlinear Tollmien-Schlichting vortex interaction in boundary-layers. European Journal of Mechanics B/Fluids 8, 179–205. For corrections see Smith, F. T., and P. Blennerhassett, in Proceedings of the Royal Society of London A 436, 585–602 (1992).

    ADS  MATH  Google Scholar 

  • Healey, J. J. 1995. On the neutral curve of the flat-plate boundary-layer—comparison between experiment, Orr-Sommerfeld theory and asymptotic theory. Journal of Fluid Mechanics 288, 59–73.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Herbert, T. 1988. Secondary instability of boundary layers. Annual Review of Fluid Mechanics 20, 487–526.

    Article  ADS  Google Scholar 

  • Hultgren, L. S. 1992. Nonlinear spatial equilibration of an externally excited instability wave in a free shear layer. Journal of Fluid Mechanics 236, 635–664.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Jang, P. S., D. J. Benney, and R. L. Gran. 1986. On the origin of streamwise vortices in a turbulent boundary layer. Journal of Fluid Mechanics 169, 109–123.

    Article  ADS  MATH  Google Scholar 

  • Jobe, C. E., and O. R. Burggraf. 1974. The numerical solution of the asymptotic equations of trailing edge flow. Proceedings of the Royal Society A 340, 91–111.

    Article  MATH  Google Scholar 

  • Klingmann, B. G. B., A. V. Boiko, K. J. A. Westin, V. V. Kozlov, and P. H. Alfredsson. 1993. Experiments on the stability of Tollmien-Schlichting waves. European Journal of Mechanics B/Fluids 12, 493–514.

    Google Scholar 

  • Kachanov, Yu. S., V. V. Kozlov, and V. Ya. Levchenko. 1977. Nonlinear development of a wave in a boundary layer. Izvestiia Academii Nauk SSSR, Mekhanika Zhidkosti i Gaza 3, 49–58.

    Google Scholar 

  • Knapp, C. F., and P. J. Roache. 1968. A combined visual and hot wire anemometer investigation of boundary-layer transition. American Institute of Aeronautics and Astronautics Journal 6, 29–36.

    Google Scholar 

  • Krasny, R. 1986. A study of singularity formation in a vortex sheet by the point-vortex approximation. Journal of Fluid Mechanics 167, 65–93.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Li, L., J. D. A. Walker, R. I. Bowles, and F. T. Smith. 1998. Short-scale break-up in unsteady interactive layers: Local development of normal pressure gradients and vortex wind-up. Journal of Fluid Mechanics 374, 335–378.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lighthill, M. J. 1953. On boundary layers and upstream influence. II. Supersonic flows without separation. Proceedings of the Royal Society of London A 217, 478–507.

    Article  MATH  ADS  Google Scholar 

  • Lin, C. C. 1945. On the stability of two-dimensional parallel flows. Quarterly of Applied Mathematics 3, 117–142, 213–234, 277–301 (1946).

    MathSciNet  MATH  Google Scholar 

  • Mankbadi, R. R., X. Wu, and S. S. Lee, 1993. A critical-layer analysis of the resonant triad in boundary-layer transition—nonlinear interactions. Journal of Fluid Mechanics 256, 85–106.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Messiter, A. F. 1970. Boundary-layer flow near the trailing edge of a flat plate. SIAM Journal of Applied Mathematics 18, 241–257.

    Article  MATH  Google Scholar 

  • Moston, J., P. A. Stewart, and S. J. Cowley. 2000. On the nonlinear growth of two-dimensional Tollmien-Schlichting waves in a flat-plate boundary layer. Journal of Fluid Mechanics 425, 259–300.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Neiland, V. Ya. 1969. Towards a theory of separation of the laminar boundary layer in a supersonic stream. Izvestiia Academii Nauk SSSR, Mekhanika Zhidkosti i Gaza 4, 53–57.

    MATH  Google Scholar 

  • Prandtl, L. 1904. Ãœber Flüssigkeitsbewegung bei sehr kleiner Reibung. Verh. III. Intern. Math. Kongr., Heidelberg, 1904. Leipzig: Teubner, 484–491 (1905). English translation in NACA TM 452.

    Google Scholar 

  • Prandtl, L. 1932. Production of vortices. Film, 10 minutes, silent, black and white.

    Google Scholar 

  • Raetz, G. S. 1959. A new theory of the cause of transition in fluid flows. Norair Report NOR-59-383, Hawthorne, Calif.

    Google Scholar 

  • Robins, A. J., and J. A. Howarth. 1972. Boundary-layer development at a two-dimensional rear stagnation point. Journal of Fluid Mechanics 56, 161–171.

    Article  ADS  MATH  Google Scholar 

  • Rosenhead, L. 1963. Laminar Boundary Layers. Mineola, N.Y.: Dover.

    MATH  Google Scholar 

  • Ruban, A. I. 1984. On the generation of Tollmien-Schlichting waves by sound. Izvestiia Academii Nauk SSSR, Mekhanika Zhidkosti i Gaza 5, 44–52.

    MATH  Google Scholar 

  • Sadovskii, V. S. 1971. Vortex regions in a potential flow with a jump in the Bernouilli constant at the boundary. Prikladnaia Matematika i Mekhanika 35(3), 773–779.

    MATH  Google Scholar 

  • Shen, S. F. 1978. Unsteady separation according to the boundary-layer equation. Advances in Applied Mechanics 18, 177–220.

    Article  MATH  Google Scholar 

  • Siegel, M., S. Tanveer, and W.-S. Dai. 1996. Singular effects of surface tension in evolving Hele-Shaw flows. Journal of Fluid Mechanics 323, 201–236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smith, F. T. 1977. The laminar separation of an incompressible fluid streaming past a smooth surface. Proceedings of the Royal Society of London A 356, 433–463.

    Article  ADS  Google Scholar 

  • Smith, F. T. 1979. On the non-parallel flow stability of the Blasius boundary layer. Proceedings of the Royal Society of London A 366, 91–109.

    Article  MATH  ADS  Google Scholar 

  • Smith, F. T. 1982. On the high-Reynolds-number theory of laminar flows. IMA Journal of Applied Mathematics 28, 207–281.

    Article  MATH  ADS  Google Scholar 

  • Smith, F. T., and P. G. Daniels. 1981. Removal of Goldstein’s singularity at separation, in flow past obstacles in wall layers. Journal of Fluid Mechanics 110, 1–37.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Stewartson, K. 1969. On the flow near the trailing edge of a flat plate. Part II. Mathematika 16, 106–121.

    Article  MATH  Google Scholar 

  • Stewartson, K. 1970. Is the singularity at separation removable? Journal of Fluid Mechanics 44, 347–364.

    Article  MATH  ADS  Google Scholar 

  • Stewartson, K. 1981. D’Alembert’s paradox. SIAM Reviews 23, 308–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Sulem, C., P. L. Sulem, and H. Frisch. 1983. Tracing complex singularities with spectral methods. Journal of Computational Physics 50(1), 138–161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sychev, V. V. 1972. On laminar separation, Izvestiia Academii Nauk SSSR, Mekhanika Zhidkosti i Gaza 3, 47–59.

    MATH  Google Scholar 

  • Sychev, V. V., A. I. Ruban, V. V. Sychev, and G. L. Korolev. 1998. Asymptotic Theory of Separated Flows. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Terrill, R. M. 1960. Laminar boundary-layer flow near separation with and without suction. Philosophical Transactions of the Royal Society of London A 253, 55–100.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Tollmien, W. 1929. Ãœber die Entstehung der Turbulenz. Nachr. Ges. Wiss. Göttingen, 21–44. English translation in NACA TM 609 (1931).

    Google Scholar 

  • Tollmien, W. 1935. Ein allgemeines Kriterium der Instabilität laminarer Geschwindig-keitsverteilungen. Nachr. Ges. Wiss. Fachgruppe, Göttingen 1, 79–114. See also NACA TM 792 (1936).

    MATH  Google Scholar 

  • Tutty, O. R., and S. J. Cowley. 1986. On the stability and the numerical solution of the unsteady interactive boundary-layer equation. Journal of Fluid Mechanics 168, 431–456.

    Article  ADS  MATH  Google Scholar 

  • Van Dyke, M. 1982. An Album of Fluid Motion. Stanford, Calif.: Parabolic Press.

    Google Scholar 

  • Wu, X. 1999. Generation of Tollmien-Schlichting waves by convecting gusts interacting with sound. Journal of Fluid Mechanics 397, 285–316.

    Article  MATH  ADS  Google Scholar 

  • Wu, X., P. A. Stewart, and S. J. Cowley. 1996. On the weakly nonlinear development of Tollmien-Schlichting wavetrains in boundary layers. Journal of Fluid Mechanics 323, 133–171.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Cowley, S.J. (2001). Laminar Boundary-layer Theory: A 20th Century Paradox?. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_25

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics