Skip to main content

A New Family of Mesoporous Molecular Sieves

  • Chapter

Part of the book series: Fundamental Materials Research ((FMRE))

Abstract

The M41S family of materials represent the first mesoporous molecular sieves. This new family of materials with high pore volumes and surface areas exhibits an array of structures that are thermally stable inorganic analogs of organic, lyotropic liquid crystalline phases. The ability of the surfactant/aluminosilicate intermediate to assemble into stable extended structures results in mesoporous materials that are structurally diverse exhibiting hexagonal, cubic, and lamellar phases. The materials can be prepared with narrow pore size distributions at pore sizes ranging from 15 to greater than 100 Å, varied elemental compositions and variable surface properties. This variability in physical properties has resulted in catalytic and sorption separation applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31: 578 (1972).

    Google Scholar 

  2. R. K. IIer, The Chemistry of Silica, J. Wiley & Sons, Inc. (1979).

    Google Scholar 

  3. K. Wefers; C. Misra, Oxides and Hydroxides of Aluminum; Alcoa Technical Paper No. 19, Revised, Alcoa Laboratories (1987).

    Google Scholar 

  4. T. J. Pinnavaia, Science 220:365–371 (1983).

    CAS  Google Scholar 

  5. T. Yanagisawa, T. Shimizu, K. Kiroda, C. Kato, Bull. Chem. Soc. Jpn. 63,:988–992 (1983).

    Google Scholar 

  6. M. E. Landis, B. A. Aufdembrink, P. Chu, I. D. Johnson, G. W. Kirker, M. K. Rubin, JACS 113:3189–90 (1991)

    CAS  Google Scholar 

  7. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J.S. Beck, Nature 359:710–712 (1992).

    Article  CAS  Google Scholar 

  8. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, JACS 114(27):10834–43 (1992).

    Article  CAS  Google Scholar 

  9. W. S. Borghard, E. W. Sheppard, H. J. Schoennagel, Rev. Sci. Instrum., 62:2801–2809 (1991).

    Article  CAS  Google Scholar 

  10. G. Horvath, K. Kawazoe, J. Chem. Eng. Japan 16(6):470–475 (1983).

    CAS  Google Scholar 

  11. S. J. Gregg, K.S.W. Sing, Adsorption, Surface Area, and Porosity, 2nd. ed., Academic Press, Inc. (1982).

    Google Scholar 

  12. K. Fontell, Colloid & Polymer Science 268,:264–285 (1990).

    Article  CAS  Google Scholar 

  13. K. Fontell, J. Colloid and Interface Science 43(1):156–164 (1972).

    Google Scholar 

  14. V. Luzzati, A. Tardieu, T. Gulik-Krzywicki, E. Rivas, F. Reiss-Husson, Nature, 220: 485–88 (1968).

    CAS  Google Scholar 

  15. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurthy, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science, 261:1299–1303 (1993).

    CAS  Google Scholar 

  16. P. Mariani, V. Luzzati, H. J. Delacroix, Mol. Biol., 204:165–89 (1988).

    CAS  Google Scholar 

  17. J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, S. E. Schramm, Chem. Mater., 6(10):1816–21 (1994).

    Article  CAS  Google Scholar 

  18. G. D. Stucky, A. Monnier, F. Schuth, Q. Huo, D. Margolese, D. Kumar, M. Krishnamurthy, P. M. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka,, Mol. Cryst. Liq. Cryst., 240,:187–200 (1994).

    CAS  Google Scholar 

  19. Q. Huo, D. I. Margolese, U. Ciesia, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, P.M.; F. Schuth, G. D. Stucky, Nature, 368:317–21 (1994).

    Article  CAS  Google Scholar 

  20. R. G. Laughlin, Cationic Surfactants:Physical Chemistry, D. N. Rubingh, P. M. Holland, eds., Marcel Dekker, New York, Chapter 1 (1991).

    Google Scholar 

  21. R. Zana, Cationic Surfactants:Physical Chemistry, D. N. Rubingh, P. M. Holland, eds., Marcel Dekker, New York, Chapter 2 (1991).

    Google Scholar 

  22. E. W. Anacker, H. M. Ghose, J. Physical Chemistry, 67:1713–1715 (1963).

    CAS  Google Scholar 

  23. E. W. Anacker, H. M. Ghose, JACS, 90:3161–3166 (1968).

    Article  CAS  Google Scholar 

  24. A. L. Underwood, E. W. Anacker, J. of Colloid and Interface Science, 117:242–250, (1987).

    CAS  Google Scholar 

  25. F. Reiss-Husson, V. Luzzati, J. of Physical Chemistry, 68,:3504–3511 (1964).

    CAS  Google Scholar 

  26. P. Ekwall, L. Mandell, P. Solyom, J. of Colloid and Interface Science, 35:519–528 (1971).

    CAS  Google Scholar 

  27. G. Lindblom, B. Lindman, L. Mandell, J. of Colloid and Interface Science, 42,:400–409 (1973).

    CAS  Google Scholar 

  28. J. Ulmius, B. Lindman, G. Lindblom, T. Drakenberg, J. of Colloid and Interface Science, 65: 88–97 (1978).

    CAS  Google Scholar 

  29. L. Sepulveda, C. Gamboa, J. of Colloid and Interface Science, 118:87–90 (1987).

    CAS  Google Scholar 

  30. K. Fontell, A. Khan, B. Lindstrom, D. Maciejewska, S. Puang-Ngern, Colloid and Polymer Science, 269: 727–742 (1991).

    CAS  Google Scholar 

  31. U. Henriksson, E. S. Blackmore, G. J. T. Tiddy, O. Soderman, J. Physical Chemistry, 96: 3894–3902 (1992).

    CAS  Google Scholar 

  32. P. Lianos, R. Zana, J. of Physical Chemistry, 87:1289–1291 (1983).

    CAS  Google Scholar 

  33. S. Hashimoto; J. K. Thomas, D. F. Evans, S. Mukherjer; B. W. Ninham, J. of Colloid and Interface Science, 95:594–596 (1983).

    CAS  Google Scholar 

  34. J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S.D. Hellring, J. S Beck, J. L.; Schlenker, D. H. Olson, E. W. Sheppard, Zeolites and Related Microporous Materials: State of the Art 1994 (Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 7/17-22/94), J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hölderich, eds., Elsevier Science, 53 (1994).

    Google Scholar 

  35. J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olson, E. W. Sheppard, Chemistry of Materials, 6:2317–2326 (1994).

    CAS  Google Scholar 

  36. D. Maciejewska, A. Khan, B. Lindman, Progress in Colloid and Polymer Science, 73: 174–179 (1987).

    CAS  Google Scholar 

  37. K. Hayakawa, J. C. T. Kwak, “Cationic Surfactants: Physical Chemistry”, D. N. Rubingh, P. M. Holland, eds., Marcel Dekker, New York, Chapter 5 (1991).

    Google Scholar 

  38. A. Firouzi, D. Kumar, L. M. Bull, T. Besler, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chmelka, Science, 267:1138–1143 (1995). and references within.

    CAS  Google Scholar 

  39. Q. Huo, D. I. Margolese, U. Ciesia, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chemistry of Materials, 6:1176–1191 (1994).

    Article  CAS  Google Scholar 

  40. C-Y. Chen, S. L. Burkett, H-X. Li, M. E. Davis, Microporous Materials, 2,:27–34 (1993).

    CAS  Google Scholar 

  41. P. T. Tanev, T. J. Pinnavaia, Science, 267:365–867 (1995).

    Google Scholar 

  42. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, K. M. Keville, S. S. Shih, T. F. Degnan, F. G. Dwyer, M. E. Landis, U. S. Patent 5,183,561, February 2, 1993.

    Google Scholar 

  43. S. S. Shih, U. S. Patent 5,344,553, September 6, 1994.

    Google Scholar 

  44. J. S. Beck, D. C. Calabro, S. B. McCullen, B. P. Pelrine, K. D. Schmitt, J. C. Vartuli, U. S. Patent 5,220,101, June 15, 1993.

    Google Scholar 

  45. P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature, 368:321–323 (1994).

    Article  CAS  Google Scholar 

  46. A. Corma, A. Martinez, V. Martinez-Soria, J. B. Monton, J. of Catalysis, 153:25–31 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

McCullen, S. et al. (2002). A New Family of Mesoporous Molecular Sieves. In: Pinnavaia, T.J., Thorpe, M.F. (eds) Access in Nanoporous Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47066-7_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47066-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45218-5

  • Online ISBN: 978-0-306-47066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics