Skip to main content

Wavelets in Medical Image Processing: Denoising, Segmentation, and Registration

  • Chapter
Handbook of Biomedical Image Analysis

Part of the book series: International Topics in Biomedical Engineering ((ITBE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Mallat, S. and Hwang, W. L., Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory, Vol. 38, No. 2, pp. 617–643, 1992.

    Article  MathSciNet  Google Scholar 

  2. Strickland, R. N. and Hahn, H. I., Wavelet transform matched filters for the detection and classification of microcalcifications in mammography, In: Proceedings of the International Conference on Image Processing, Washington, D.C., Vol. 1, pp. 422–425, 1995.

    Article  Google Scholar 

  3. Grossman, A. and Morlet, J., Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., Vol. 15, No. 4, pp. 723–736, 1984.

    Article  MathSciNet  Google Scholar 

  4. Haar, A., Zur Theorie der Orthogonalen Funktionensysteme, Math. Annal., Vol. 69, pp. 331–371, 1910.

    Article  MATH  MathSciNet  Google Scholar 

  5. Mallat, S., A theory for multiresolution signal decomposition: The wavelet representation IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, No. 7, pp. 674–693, 1989.

    Article  MATH  Google Scholar 

  6. Daubechies, I., Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math., Vol. 41, No. 7, pp. 909–996, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  7. Unser, M., Aldroubi, A., and Laine, A., IEEE transactions on medical imaging: Special issue on wavelets in medical imaging, Vol. 22, No. 3, 2003.

    Google Scholar 

  8. Weaver, J. B., Yansun, X., Healy, D. M., and Cromwell, L. D., Filtering noise from images with wavelet transforms Magn. Reson. Med., Vol. 21, No. 2, pp. 288–295, 1991.

    Article  Google Scholar 

  9. Unser, M. and Aldroubi, A., A review of wavelets in biomedical applications Proceedings of the IEEE, Vol. 84, No. 4, pp. 626–638, 1996.

    Article  Google Scholar 

  10. Laine, A., Wavelets in spatial processing of biomedical images, Ann. Rev. Biomed. Eng., Vol. 2, pp. 511–550, 2000.

    Article  Google Scholar 

  11. Aldroubi, A. and Unser, M., Wavelets in Medicine and Biology, CRC Press, Boca Raton, FL, 1996.

    MATH  Google Scholar 

  12. Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  13. Papoulis, A., The Fourier Integral and its Applications, McGraw-Hill, New York, NY, 1987.

    Google Scholar 

  14. Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, 1998.

    MATH  Google Scholar 

  15. Daubechies, I., Ten Lectures on Wavelets, Siam, Philadelphia, PA, 1992.

    MATH  Google Scholar 

  16. Mallat, S. and Zhong, S., Characterization of signals from multi-scale edges, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 7, pp. 710–732, 1992.

    Article  Google Scholar 

  17. Holschneider, M., Kronland-Martinet, K., Morlet, J., and Tchamitchian, P., Wavelets, Time Frequency Methods and Phase Space, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  18. Shensa, M., The discrete wavelet transform: Wedding the a trous and mallat algorithms, IEEE Trans. Signal Process., Vol. 40, No. 10, pp. 2464–2482, 1992.

    Article  MATH  Google Scholar 

  19. Koren, I. and Laine, A., A discrete dyadic wavelet transform for multidimensional feature analysis, In: Time Frequency and Wavelets in Biomedical Signal Processing, IEEE Press Series in Biomedical Engineering, M. Akay, Ed., IEEE Press, Piscataway, NJ, pp. 425–448, 1998.

    Google Scholar 

  20. Feichtinger, H. and Strohmer, T., eds, Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, MA, 1998.

    MATH  Google Scholar 

  21. Wickerhauser, M. V., Adapted Wavelet Analysis from Theory to Software, Wellesley, Boston, MA, 1993.

    Google Scholar 

  22. Meyer, F. and Coifman, R., Brushlets: A tool for directional image analysis and image compression, Appl. Comput. harmonic Anal., Vol. 4, pp. 147–187, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  23. Gabor, D., Theory of communication, J. IEE, Vol. 93, pp. 429–457, 1946.

    Google Scholar 

  24. Bastiaans, M., A sampling theorem for the complex spectrogram and Gabor’s expansion of a signal in Gaussian elementary signals, Opt. Eng., Vol. 20, No. 4, pp. 594–598, 1981.

    Google Scholar 

  25. Porat, M. and Zeevi, Y., The generalized Gabor scheme of image representation in biological and machine vision, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 10, No. 4, pp. 452–468, 1988.

    Article  MATH  Google Scholar 

  26. Hubel, D. and Wiesel, T., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., Vol. 160, pp. 106–154, 1962.

    Google Scholar 

  27. Daugman, J., Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression, IEEE Trans. Acoust., Speech, Signal Process., Vol. 36, No. 7, pp. 1169–1179, 1988.

    Article  MATH  Google Scholar 

  28. Porat, M. and Zeevi, Y., Localized texture processing in vision: Analysis and synthesis in the Gaborian space, IEEETrans. Biomed. Eng., Vol. 36, No. 1, pp. 115–129, 1989.

    Article  Google Scholar 

  29. Coifman, R. R., Meyer, Y., and Wickerhauser, M. V., Wavelet Analysis and signal processing, In: Wavelets and Their Applications, B. Ruskai, Ed., Jones and Barlett, Boston, pp. 153–178, 1992.

    Google Scholar 

  30. Coifman, R. R. and Woog, L. J., Adapted waveform analysis, wavelet packets, and local cosine libraries as a tool for image processing, In: Investigative and Trial Image Processing, San Diego, CA, Vol. 2567, 1995.

    Google Scholar 

  31. Malvar, H., Lapped transforms for efficient transform/subband coding, IEEE Trans. Acoust. Sign. Speech Process., Vol. 38, pp. 969–978, 1990.

    Article  Google Scholar 

  32. Donoho, D. L. and Johnstone, I. M., Ideal de-noising in an orthonormal basis chosen from a library of bases, Statistics Department, Stanford University, Technical Report, 1994.

    Google Scholar 

  33. Donoho, D., De-noising by soft-thresholding, IEEE Trans. Inf. Theory, Vol. 41, No. 3, pp. 613–627, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  34. Gao, H. and Bruce, A., Waveshrink with firm shrinkage, Statist. Sinica, Vol. 7, pp. 855–874, 1997.

    MATH  MathSciNet  Google Scholar 

  35. Laine, A., Fan, J., and Yang, W., Wavelets for contrast enhancement of digital mammography, IEEE Eng. Med. Biol. (September), pp. 536–550, 1995.

    Google Scholar 

  36. Koren, I., Laine, A., and Taylor, F., Image fusion using steerable dyadic wavelet transform, In: Proceedings of the International Conference on Image Processing, Washington, D.C., pp. 232–235, 1995.

    Google Scholar 

  37. Laine, A., Fan, J., and Schuler, S., A framework for contrast enhancement by dyadic wavelet analysis, In: Digital Mammography, A. Gale, S. Astley, D. Dance, and A. Cairns, Eds., Elsevier, Amsterdam, 1994.

    Google Scholar 

  38. Laine, A., Schuler, S., Fan, J., and Huda, W., Mammographic feature enhancement by multi-scale analysis, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 725–740, 1994.

    Article  Google Scholar 

  39. Fan, J. and Laine, A., multi-scale contrast enhancement and de-noising in digital radiographs, In: Wavelets in Medicine and Biology, A. Aldroubi and M. Unser, Eds., CRC Press, Boca Raton FL, pp. 163–189, 1996.

    Google Scholar 

  40. Coifman, R. and Donoho, D., Translation-invariant de-noising, In: Wavelets and Statistics, A. Antoniadis and G. Oppenheim, Eds., Springer-Verlag, New York, NY, 1995.

    Google Scholar 

  41. Donoho, D. and Johnstone, I., Ideal spatial adaptation via wavelet shrinkage, Biometrika, Vol. 81, pp. 425–455, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  42. Stein, C., Estimation of the mean of a multivariate normal distribution, Ann. Stat., Vol. 9, pp. 1135–1151, 1981.

    Article  MATH  Google Scholar 

  43. Donoho, D., Nonlinear solution of linear inverse problems by wavelet-vaguelette decompositions, J. Appl. Comput. Harmonic Anal., Vol. 2, No. 2, pp. 101–126, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  44. Chang, S., Yu, B., and Vetterli, M., Spatially adaptive wavelet thresholding with context modeling for image de-noising, IEEE Trans. Image Process., Vol. 9, No. 9, pp. 1522–1531, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  45. Donoho, D. and Johnstone, I., Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., Vol. 90, No. 432, pp. 1200–1224, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  46. Koren, I., A Multi-Scale Spline Derivative-Based Transform for Image Fusion and Enhancement, Ph.D. Thesis, Electrical Engineering, University of Florida, 1996.

    Google Scholar 

  47. Kalifa, J., Laine, A., and Esser, P., Regularization in tomographic reconstruction using thresholding estimators, IEEE Trans. Med. Imaging, Vol. 22, No. 3, pp. 351–359, 2003.

    Article  Google Scholar 

  48. Selesnick, I., The slantlet transform, IEEE Trans. Signal Process., Vol. 47, No. 5, pp. 1304–1313, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  49. Candes, E. and Donoho, D., Curvelets—a surprisingly effective nonadaptive representation for objects with edges, In: Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, and L. Schumaker, Eds., Vanderbilt University Press, Nashville, TN, 1999.

    Google Scholar 

  50. Starck, J., Candes, E., and Donoho, D., The curvelet transform for image de-noising, IEEE Trans. Image Process., Vol. 11, No. 6, pp. 670–684, 2002.

    Article  MathSciNet  Google Scholar 

  51. Candes, E. and Donoho, D., Ridgelets: The key to higher-dimensional intermittency?, Phil. Trans. R. Soc. A, Vol. 357, pp. 2495–2509, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  52. Liebling, M., Blu, T., and Unser, M., Fresnelets: New Multiresolution Wavelet Bases for Digital Holography, IEEE Trans. Image Process., Vol. 12, No. 1, pp. 29–43, 2003.

    Article  MathSciNet  Google Scholar 

  53. Gao, H., Wavelet shrinkage de-noising using the non-negative Garrote, J. Comput. Graph. Stat., Vol. 7, pp. 469–488, 1998.

    Article  Google Scholar 

  54. Antoniadis, A. and Fan, J., Regularization of wavelet approximations, J. Am. Stat. Assoc., Vol. 96, No. 455, pp. 939–967, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  55. Nason, G., Wavelet shrinkage using cross-validation, J. R. Stat. Soc., Vol. 58, pp. 463–479, 1996.

    MATH  MathSciNet  Google Scholar 

  56. Weyrich, N. and Warhola, G., De-noising using wavelets and cross-validation, NATA Adv. Study Inst., Vol. 454, pp. 523–532, 1995.

    MathSciNet  Google Scholar 

  57. Jansen, M., Malfait, M., and Bultheel, A., Generalised cross-validation for wavelet thresholding, Signal Process., Vol. 56, pp. 33–44, 1997.

    Article  MATH  Google Scholar 

  58. Ogden, R. T. and Parzen, E., Change-point approach to data analytic wavelet thresholding, Stat. Comput., Vol. 6, pp. 93–99, 1996.

    Article  Google Scholar 

  59. Angelini, E., Laine, A., Takuma, S., Holmes, J., and Homma, S., LV volume quantification via spatio-temporal analysis of real-time 3D echocardiography, IEEE Trans. Med. Imaging, Vol. 20, pp. 457–469, 2001.

    Article  Google Scholar 

  60. Jin, Y., Angelini, E., Esser, P., and Laine, A., De-noising SPECT/PET images using cross-scale regularization, In: Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI 2003), Montreal, Canada, Vol. 2879, No. 2, pp. 32–40, 2003.

    Google Scholar 

  61. Mulet-Parada, M. and Noble, J. A., 2D+T acoustic boundary detection in echocardiography, In: Medical Image Computing and Computer-Assisted Intervention-MICCAI’98, Cambridge, MA, pp. 806–813, 1998.

    Google Scholar 

  62. Chen, C., Lu, H., and Han, K., A textural approach based on Gabor functions for texture edge detection in ultrasound images, Ultrasound Med. Biol., Vol. 27, No. 4, pp. 515–534, 2001.

    Article  Google Scholar 

  63. McLachlan, G. J. and Krishnan, T., The EM Algorithm and Extensions, Wiley & Sons, Inc., New York, 1997.

    MATH  Google Scholar 

  64. Shepp, L. and Vardi, V., Maximum likelihood reconstruction for emission computed tomography, IEEE Trans. Med. Imaging, Vol. 1, pp. 113–122, 1982.

    Article  Google Scholar 

  65. Farquhar, T. H., Chatziioannou, A., Chinn, G., Dahlbom, M., and Hoffman, E. J., An investigation of filter choice for filtered back-projection reconstruction in PET, IEEE Trans. Nucl. Sci., Vol. 45(3 Part 2), pp. 1133–1137, 1998.

    Article  Google Scholar 

  66. Hudson, H. and Larkin, R., Accelerated image reconstruction using ordered subsets of projection data, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 601–609, 1994.

    Article  Google Scholar 

  67. Freeman, W. and Adelson, E., The design and use of steerable filters, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 13, pp. 891–906, 1991.

    Article  Google Scholar 

  68. Babaud, J., Witkin, A., Baudin, M., and Duba, R., Uniqueness of the Gaussian kernel for scale-space filtering, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, pp. 26–33, 1986.

    Article  MATH  Google Scholar 

  69. Julez, B., A Theory of preattentive texture discrimination based on first-order statistics of textons, Biol. Cybern., Vol. 41, pp. 131–138, 1981.

    Article  Google Scholar 

  70. Watson, A., Barlow, H., and Robson, J., What dose the eye see best?, Nature, Vol. 302, pp. 419–422, 1983.

    Article  Google Scholar 

  71. Beck, J., Sutter, A., and Ivry, R., Spatial frequency channels and perceptual grouping in texture segregation, Comput. Vis., Graph. Image Process., Vol. 37, pp. 299–325, 1987.

    Article  Google Scholar 

  72. Daugman, J., Image analysis by local 2-D spectral signatures, J. Opt. Soc. Am. A, Vol. 2, pp. 74, 1985.

    Article  Google Scholar 

  73. Unser, M., Texture classification and segmentation using wavelet frames, IEEE Trans. Image Process., Vol. 4, No. 11, pp. 1549–1560, 1995.

    Article  MathSciNet  Google Scholar 

  74. Laine, A. and Fan, J., Texture classification by wavelet packet signatures, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 15, No. 11, pp. 1186–1191, 1993.

    Article  Google Scholar 

  75. Laine, A. and Fan, J., Frame representation for texture segmentation, IEEE Trans. Image Process., Vol. 5, No. 5, pp. 771–780, 1996.

    Article  Google Scholar 

  76. Hsin, H. and Li, C., An experiment on texture segmentation using modulated wavelets, IEEE Trans. Syst., Man Cybern., Vol. 28, No. 5, pp. 720–725, 1998.

    Article  Google Scholar 

  77. Wang, J., Multiwavelet packet transform with application to texture segmentation, Electron. Lett., Vol. 38, No. 18, pp. 1021–1023, 2002.

    Article  Google Scholar 

  78. Acharyya, M. and Kundu, M., Document image segmentation using wavelet scale-space features, IEEE Trans. Circuits Syst. Video Technol., Vol. 12, No. 12, pp. 1117–1127, 2002.

    Article  Google Scholar 

  79. Wang, J., Li, J., Gray, R., and Wiederhold, G., Unsupervised multiresolution segmentation for images with low depth of field, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 23, No. 1, pp. 85–90, 2001.

    Article  Google Scholar 

  80. Etemad, K., Doermann, D., and Chellappa, R., Multi-scale segmentation of unstructured document pages using soft decision integration, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 19, No. 1, pp. 92–96, 1997.

    Article  Google Scholar 

  81. Porter, R. and Canagarajah, N., A robust automatic clustering scheme for image segmentation using wavelets, IEEE Trans. Image Process., Vol. 5, No. 4, pp. 662–665, 1996.

    Article  Google Scholar 

  82. Zhang, J., Wang, D., and Tran, Q., A wavelet-based multiresolution statistical model for texture, IEEE Trans. Image Process., Vol. 7, No. 11, pp. 1621–1627, 1998.

    Article  Google Scholar 

  83. Choi, H. and Baraniuk, R., Multis-cale image segmentation using wavelet-domain hidden markov models, IEEE Trans. Image Process., Vol. 10, No. 9, pp. 1309–1321, 2001.

    Article  MathSciNet  Google Scholar 

  84. Li, J. and Gray, R., Context-based multi-scale classification of document images using wavelet coefficient distributions, IEEE Trans. Image Process., Vol. 9, No. 9, pp. 1604–1616, 2000.

    Article  Google Scholar 

  85. Charalampidis, D. and Kasparis, T., Wavelet-based rotational invariant roughness features for texture classification and segmentation, IEEE Trans. Image Process., Vol. 11, No. 8, pp. 825–837, 2002.

    Article  Google Scholar 

  86. Chan, T. F. and Vese, L. A., Active controus without edges, IEEE Trans. Image Process., Vol. 10, No. 2, pp. 266–277, 2001.

    Article  MATH  Google Scholar 

  87. Yezzi, A., Tsai, A., and Willsky, A., A statistical approach to image segmentation for biomodal and trimodal imagery, ICCV, pp. 898–903, 1999.

    Google Scholar 

  88. Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, No. 6, pp. 679–698, 1986.

    Article  Google Scholar 

  89. Aydin, T., Yemez, Y., Anarim, E., and Sankur, B., Multi-directional and multi-scale edge detection via M-band wavelet Transform, IEEE Trans. Image Process., Vol. 5, No. 9, pp. 1370–1377, 1996.

    Article  Google Scholar 

  90. Laine, A. F., Huda, W., Chen, D., and Harris, J. G., Local enhancement of masses using continuous scale representations, J. Math. Imaging Vis., Vol. 7, No. 1, 1997.

    Google Scholar 

  91. Laine, A., and Zong, X., Border indentification of echocardiograms via multi-scale edge detection and shape modeling, In: IEEE International Conference on Image Processing, Lausanne, Switzerland, pp. 287–290, 1996.

    Google Scholar 

  92. Koren, I., Laine, A. F., Fan, J., and Taylor, F. J., Edge detection in echocardiographic image sequences by 3-D multiscale analysis, IEEE International Conference on Image Processing, Vol. 1, No. 1, pp. 288–292, 1994.

    Google Scholar 

  93. Dima, A., Scholz, M., and Obermayer, K., Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform, IEEE Trans. Image Process., Vol. 11, No. 7, pp. 790–801, 2002.

    Article  Google Scholar 

  94. Wilson, R., Calway, A., and Pearson, R., A generalized wavelet transform for Fourier analysis: The multiresolution Fourier transform and its application to image and audio signal analysis, IEEE Trans. Inf. Theory, Vol. 38, No. 2, pp. 674–690, 1992.

    Article  MathSciNet  Google Scholar 

  95. Yoshida, H., Katsuragawa, S., Amit, Y., and Doi, K., Wavelet snake for classification of nodules and false positives in digital chest radiographs, In: IEEE EMBS Annual Conference, Chicago, IL, pp. 509–512, 1997.

    Google Scholar 

  96. deRivaz, P. and Kingsbury, N., Fast Segmentation using level set curves of complex wavelet surfaces, In: IEEE International Conference on Image Processing, Vol. 3, pp. 29–32, 2000.

    Google Scholar 

  97. Wu, H., Liu, J., and Chui, C., A wavelet frame based image force model for active contouring algorithms, IEEE Trans. Image Process., Vol. 9, No. 11, pp. 1983–1988, 2000.

    Article  Google Scholar 

  98. Sun, H., Haynor, D., and Kim, Y., Semiautomatic video object segmentation using VSnakes, IEEE Trans. Circuits Syst. Video Technol., Vol. 13, No. 1, pp. 75–82, 2003.

    Article  Google Scholar 

  99. Neves, S., daSilva, E., and Mendonca, G., Wavelet-watershed automatic infrared image segmentation method, IEEE Electron. Lett., Vol. 39, No. 12, pp. 903–904, 2003.

    Article  Google Scholar 

  100. Bello, M., A combined Markov random field and wave-packet transform-based approach for image segmentation, IEEE Trans. Image Process., Vol. 3, No. 6, pp. 834–846, 1994.

    Article  Google Scholar 

  101. Davatzikos, C., Tao, X., and Shen, D., Hierarchical active shape models using the wavelet transform, IEEE Trans. Med. Imaging, Vol. 22, No. 3, pp. 414–423, 2003.

    Article  Google Scholar 

  102. Strickland, R. N. and Hahn, H. I., Wavelet transforms for detecting microcalcifications in mammograms, IEEE Trans. Med. Imaging, Vol. 15, No. 2, pp. 218–229, 1996.

    Article  Google Scholar 

  103. Zhang, X. and Desai, M., Segmentation of bright targets using wavelets and adaptive thresholding, IEEE Trans. Image Process., Vol. 10, No. 7, pp. 1020–1030, 2001.

    Article  MATH  Google Scholar 

  104. Allen, R., Kamangar, F., and Stokely, E., Laplacian and orthogonal wavelet pyramid decompositions in coarse-to-fine registration, IEEE Trans. Signal Process., Vol. 41, No. 12, pp. 3536–3541, 1993.

    Article  MATH  Google Scholar 

  105. Unser, M., Thevenaz, P., Lee, C., and Ruttimann, U., Registration and statistical analysis of PET images using the wavelet transform, IEEE Eng. Med. Biol. (September/October), pp. 603–611, 1995.

    Google Scholar 

  106. McGuire, M. and Stone, H., Techniques for multiresolution image registration in the presence of occlusions, IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 3, pp. 1476–1479, 2000.

    Article  Google Scholar 

  107. Zheng, Q. and Chellappa, R., Acomputational vision approach to image registration, IEEE Trans. Image Process., Vol. 2, No. 3, pp. 311–325, 1993.

    Article  Google Scholar 

  108. Moigne, J., Campbell, W., and Cromp, R., Automated parallel image registration technique based on the correlation of wavelet features, IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 8, pp. 1849–1864, 2002.

    Article  Google Scholar 

  109. Dinov, I., Mega, M., Thompson, P., Woods, R., Sumners, D., Sowell, E., and Toga, A., Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage, IEEE Trans. Inf. Technol. Biomed., Vol. 6, No. 1, pp. 73–85, 2002.

    Article  Google Scholar 

  110. Unser, M. and Blu, T., Mathematical properties of the JPEG2000 wavelet filters, IEEE Trans. Image Process., Vol. 12, No. 9, pp. 1080–1090, 2003.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Jin, Y., Angelini, E., Laine, A. (2005). Wavelets in Medical Image Processing: Denoising, Segmentation, and Registration. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. International Topics in Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48551-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48551-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48550-3

  • Online ISBN: 978-0-306-48551-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics