Skip to main content

Mechanisms of Acrylamide Formation

Maillard-induced transformation of asparagine

  • Conference paper
Chemistry and Safety of Acrylamide in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 561))

Abstract

The formation of acrylamide (AA) from L-asparagine was studied in Maillard model systems under pyrolysis conditions. While the early Maillard intermediate N-glucosylasparagine generated ∼2.4 mmol/mol AA, the Amadori compound was a less efficient precursor (0.1 mmol/mol). Reaction with α-dicarbonyls resulted in relatively low AA amounts (0.2–0.5 mmol/mol), suggesting that the Strecker aldehyde pathway is of limited relevance. Similarly, the Strecker alcohol 3-hydroxypropanamide generated low amounts of AA (0.2 mmol/mol). On the other hand, hydroxyacetone afforded more than 4 mmol/mol AA, indicating that α-hydroxycarbonyls are more efficient than α-dicarbonyls in transforming asparagine into AA. The experimental results are consistent with the reaction mechanism proposed, i.e. (i) Streckertype degradation of the Schiff base leading to azomethine ylides, followed by (ii) β-elimination of the decarboxylated Amadori compound to release AA, The functional group in β-position on both sides of the nitrogen atom is crucial. Rearrangement of the azomethine ylide to the decarboxylated Amadori compound is the key step, which is favored if the carbonyl moiety contains a hydroxyl group in β-position to the N-atom. The β-elimination step in the amino acid moiety was demonstrated by reacting under pyrolysis conditions decarboxylated model Amadori compounds obtained by synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becalski, A.; Lau, B. P.-Y.; Lewis, D.; Seaman, S., 2003, Acrylamide in food: Occurrence, sources, and modeling, J. Agric. Food Chem. 51: 802–808.

    Article  CAS  Google Scholar 

  • Biedermann, M.; Noti, A.; Biederman-Brem, S.; Mozzetti, V.; Grob, K., 2002, Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes, Mitt. Lebensm. Hyg. 93: 668–687.

    CAS  Google Scholar 

  • Friedman, M., 2003, Chemistry, biochemistry, and safety of acrylamide. A review, J. Agric. Food Chem. 51: 4504–4526.

    Article  CAS  Google Scholar 

  • Gertz, C.; Klostermann, S., 2002, Analysis of acrylamide and mechanisms of its formation in deep-fried products, Eur. J. Lipid Sci. Technol. 104: 762–771.

    Article  CAS  Google Scholar 

  • Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G., 2000, Evidence for intramolecular N-H...O resonance-assisted hydrogen bonding in enaminones and related heterodienes. A combined crystal-structure, IR, NMR spectroscopic, and quantum-mechanical investigation, J. Am. Chem. Soc. 122: 10405–10417.

    Article  CAS  Google Scholar 

  • Granvogl, M.; Koehler, P.; Schieberle, P., 2004, An alternative pathway in the generation of acrylamide from asparagine, J. Agric. Food Chem. 52: in press.

    Google Scholar 

  • Grigg, R.; Thianpatanagul, S., 1984, Decarboxylative transmination. Mechanism and application to the synthesis of heterocyclic compounds, J. Chem. Soc., Chem. Comm, 180–181.

    Google Scholar 

  • Jung, M. Y.; Choi, D. S.; Ju, J. W., 2003, A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries, J. Food Sci. 68: 1287–1290.

    CAS  Google Scholar 

  • Keyhani, A.; Yaylayan, V. A., 1996, Pyrolysis/GC/MS analysis of N-(1-deoxy-D-fructos-lyl)-L-phenylalanine: Identification of novel pyridine and naphthalene derivatives, J. Agric. Food Chem. 44: 223–229.

    Article  CAS  Google Scholar 

  • Ledl F.; Schleicher E., 1990, New aspects of the Maillard reaction in foods and in the human body, Angew. Chem. Int. Ed. Engl. 29: 565–594.

    Article  Google Scholar 

  • Manini, P.; d’Ischia, M.; Prota, G., 2001, An unusual decarboxylative Maillard reaction between L-DOPA and D-glucose under biomimetic conditions: Factors governing competition with Pictet-Spengler condensation, J. Org. Chem. 66: 5048–5053.

    Article  CAS  Google Scholar 

  • Mottram, D. S.; Wedzicha, B. L.; Dodson, A. T., 2002, Food chemistry: Acrylamide is formed in the Maillard reaction, Nature 419: 448–449.

    Article  CAS  Google Scholar 

  • Riediker, S.; Stadler, R. H., 2003, Analysis of acrylamide in food using isotope-dilution liquid chromatography coupled with electrospray ionisation tandem mass spectrometry, J. Chromatogr. 1020: 121–130.

    Article  CAS  Google Scholar 

  • Rios, M. A.; Rodriguez, J., 1991, Analysis of the effect of substitution on the intramolecular hydrogen bond of malonaldehyde by ab initio calculation at the 3-21G level, Theochem. 74: 149–158.

    Article  CAS  Google Scholar 

  • Robert, F.; Vuataz, G.; Pollien, P.; Saucy, F.; Alonso, M.-I.; Bauwens, I., Blank, I., 2004, Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems, J. Agric. Food Chem. 52: submitted.

    Google Scholar 

  • Rydberg, P.; Eriksson, S.; Tareke, E.; Karlsson, P.; Ehrenberg, L.; Törnqvist, M, 2003, Investigations of factors that influence the acrylamide content of heated foodstuffs, J. Agric. Food Chem. 51: 7012–7018.

    Article  CAS  Google Scholar 

  • Schönberg, A.; Moubacher, R., 1952, The Strecker degradation of α-amino acids, Chem. Rev. 50: 261–277

    Article  Google Scholar 

  • Stadler, R. H.; Robert, F.; Riediker, S.; Varga, N.; Davidek, T.; Devaud, S.; Goldmann, T.; Blank, I., 2004, In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction, J. Agric. Food Chem. 52: 5550–5558.

    Article  CAS  Google Scholar 

  • Stadler, R. H.; Verzegnassi, L.; Varga, N.; Grigorov, M.; Studer, A.; Riediker, S.; Schilter, B., 2003, Formation of vinylogous compounds in model Maillard reaction systems, Chem. Res. Tox. 16: 1242–1250.

    Article  CAS  Google Scholar 

  • Stadler, R. H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, Ph. A.; Robert, M.-C.; Riediker, S., 2002, Food chemistry: Acrylamide from Maillard reaction products, Nature 419: 449–450.

    Article  CAS  Google Scholar 

  • Weisshaar R.; Gutsche B., 2002, Formation of acrylamide in heated potato products-model experiments pointing to asparagine as precursor, Deutsche Lebensm. Rundsch., 98: 397–400.

    CAS  Google Scholar 

  • Yasuhara, A.; Tanaka, Y.; Hengel, M.; Shibamoto, T., 2003, Gas chromatographic investigation of acrylamide formation in browning model systems, J. Agric. Food Chem. 51: 3999–4003.

    Article  CAS  Google Scholar 

  • Yaylayan, V. A., 2003, Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: Implications to aroma and color formation, Food Sci. Technol. Res. 9: 1–6.

    CAS  Google Scholar 

  • Yaylayan V. A.; Wnorowski, A., Perez Locas C., 2003, Why asparagine needs carbohydrates to generate acrylamide, J. Agric. Food Chem. 51: 1753–1757.

    Article  CAS  Google Scholar 

  • Zyzak, D. V.; Sanders, R. A.; Stojanovic, M.; Tallmadge, D. H; Eberhart, B. L.; Ewald, D. K.; Gruber, D. C.; Morsch, T. R.; Strothers, M. A.; Rizzi, G. P.; Villagran, M. D, 2003, Acrylamide formation mechanism in heated foods, J. Agric. Food Chem. 51: 4782–4787.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Blank, I. et al. (2005). Mechanisms of Acrylamide Formation. In: Friedman, M., Mottram, D. (eds) Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology, vol 561. Springer, Boston, MA. https://doi.org/10.1007/0-387-24980-X_14

Download citation

Publish with us

Policies and ethics