Skip to main content

Compression of Digital Holograms for Secure Three-Dimensional Image Storage and Transmission

  • Chapter
Optical and Digital Techniques for Information Security

Summary

We present the results of applying data compression techniques to encrypted three-dimensional objects. The objects are captured using phase-shift digital holography and encrypted using a random phase mark in the Fresnel domain. Lossy quantization is combined with lossless coding techniques to quantify compression rates. Our techniques are suitable for a range of secure three-dimensional object storage and transmission applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Javidi and J.L. Horner, Opt. Eng. 33, 1752 (1994).

    Article  ADS  Google Scholar 

  2. P. Réfrégier and B. Javidi, Opt. Lett. 20, 767 (1995).

    Article  ADS  Google Scholar 

  3. S. Fukushima, T. Kurokawa, and Y. Sakai, IEEE Photon. Technol. Lett. 3, 1133 (1991).

    Article  ADS  Google Scholar 

  4. M. Madjarova, M. Kakuta, M. Yamaguchi, and N. Ohyama, Opt. Lett. 22, 1624 (1997).

    Article  ADS  Google Scholar 

  5. J.F. Heanue, M.C. Bashaw, and L. Hesselink, Appl. Opt. 34, 6012 (1995).

    Article  ADS  Google Scholar 

  6. R.K. Wang, I.A. Watson, and C.R. Chatwin, Opt. Eng. 35, 2464 (1996).

    Article  ADS  Google Scholar 

  7. L.G. Neto and Y. Sheng, Opt. Eng. 35, 2459 (1996).

    Article  ADS  Google Scholar 

  8. B. Javidi and E. Ahouzi, Appl. Opt. 37, 6247 (1998).

    Article  ADS  Google Scholar 

  9. G. Unnikrishnan, J. Joseph, and K. Singh, Appl. Opt. 37, 8181 (1998).

    Article  ADS  Google Scholar 

  10. O. Matoba and B. Javidi, Opt. Lett. 24, 762 (1999).

    Article  ADS  Google Scholar 

  11. P.C. Mogensen and J. Glückstad, Opt. Lett. 25, 566 (2000).

    Article  ADS  Google Scholar 

  12. B. Javidi and T. Nomura, Opt. Lett. 25, 28 (2000).

    Article  ADS  Google Scholar 

  13. S. Lai and M.A. Neifeld, Opt. Commun. 178, 283 (2000).

    Article  ADS  Google Scholar 

  14. E. Tajahuerce, O. Matoba, S.C. Verrall, and B. Javidi, Appl. Opt. 39, 2313 (2000).

    Article  ADS  Google Scholar 

  15. E. Tajahuerce and B. Javidi, Appl. Opt. 39, 6595 (2000).

    Article  ADS  Google Scholar 

  16. E. Tajahuerce, J. Lancis, B. Javidi, and P. Andrés, Opt. Lett. 26, 678 (2001).

    Article  ADS  Google Scholar 

  17. O. Matoba and B. Javidi, Opt. Lett. 27, 321 (2002).

    Article  ADS  Google Scholar 

  18. J.W. Goodman and R.W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).

    Article  ADS  Google Scholar 

  19. J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, and D.J. Brangaccio, Appl. Opt. 13, 2693 (1974).

    Article  ADS  Google Scholar 

  20. T.-C. Poon and A. Korpel, Opt. Lett. 4, 317 (1979).

    Article  ADS  Google Scholar 

  21. J. Schwider, B. Burow, K.E. Elsner, J. Grzanna, and R. Spolaczyk, Appl. Opt. 22, 3421 (1983).

    Article  ADS  Google Scholar 

  22. L. Onural and P.D. Scott, Opt. Eng. 26, 1124 (1987).

    ADS  Google Scholar 

  23. U. Schnars and W.P.O. Jüptner, Appl. Opt. 33, 179 (1994).

    Article  ADS  Google Scholar 

  24. U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).

    Article  ADS  Google Scholar 

  25. I. Yamaguchi, T. Zhang, Opt. Lett. 22, 1268 (1997).

    Article  ADS  Google Scholar 

  26. G. Pedrini, P. Frning, H. Fessler, and H.J. Tiziani, Appl. Opt. 37, 6262 (1998).

    Article  ADS  Google Scholar 

  27. B. Javidi and E. Tajahuerce, Opt. Lett. 25, 610 (2000).

    Article  ADS  Google Scholar 

  28. E. Tajahuerce, O. Matoba, and B. Javidi, Appl. Opt. 40, 3877 (2001).

    Article  ADS  Google Scholar 

  29. Y. Frauel, E. Tajahuerce, M.-A. Castro, and B. Javidi, Appl. Opt. 40, 3887 (2001).

    Article  ADS  Google Scholar 

  30. Y. Frauel and B. Javidi, Opt. Lett. 26, 1478 (2001).

    Article  ADS  Google Scholar 

  31. T.J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, Appl. Opt. 41, 4124 (2002).

    Article  ADS  Google Scholar 

  32. O. Matoba, T.J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, Appl. Opt. 41, 6187 (2002).

    Article  ADS  Google Scholar 

  33. B. Javidi and F. Okano, Three-Dimensional Television, Video, and Display Technologies (Springer, Berlin 2002).

    Google Scholar 

  34. M. Rabbani, Selected Papers on Image Coding and Compression, SPIE Milestone Series MS48 (SPIE Press, Bellingham, WA, 1992).

    Google Scholar 

  35. J.W. Goodman and A.M. Silvestri, IBM J. Res. Develop. 14, 478 (1970).

    Article  MATH  Google Scholar 

  36. W.J. Dallas and A.W. Lohmann, Appl. Opt. 11, 192 (1972).

    Article  ADS  Google Scholar 

  37. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Digital holographic data reconstruction with data compression.” in, Algorithms and Systems for Optical Information Processing V, San Diego, July 2001, Proceedings of the SPIE 4471 (SPIE Press, Bellingham, WA, 2001).

    Google Scholar 

  38. T.J. Naughton, J.B. McDonald, and B. Javidi, Appl. Opt. (submitted August 2002).

    Google Scholar 

  39. B. Javidi, A. Sergent, G. Zhang, and L. Guibert, Opt. Eng. 36, 992 (1997).

    Article  ADS  Google Scholar 

  40. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, J. Opt. Soc. Am. A 15, 2629 (1998).

    Article  ADS  Google Scholar 

  41. T.J. Naughton and B. Javidi, “Compression of encrypted digital holograms of three-dimensional objects.” In preparation.

    Google Scholar 

  42. T.J. Naughton and B. Javidi, “Optical encryption of three-dimensional objects.” In preparation.

    Google Scholar 

  43. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

    Google Scholar 

  44. H.J. Caulfield, Handbook of Optical Holography (Academic Press, New York, 1979).

    Google Scholar 

  45. M. Sutkowski and M. Kujawinska, Opt. Lasers Eng. 33, 191 (2000).

    Article  Google Scholar 

  46. D.A. Huffman, Proc. IRE 40, 1098 (1952).

    Article  Google Scholar 

  47. J. Ziv and A. Lempel, IEEE Trans. IT-23, 337 (1977).

    MathSciNet  Google Scholar 

  48. T.A. Welch, IEEE Computer 17, 8 (1984).

    Google Scholar 

  49. M. Burrows and D.J. Wheeler, Digital SRC Rep. 124 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Naughton, T.J., Javidi, B. (2005). Compression of Digital Holograms for Secure Three-Dimensional Image Storage and Transmission. In: Javidi, B. (eds) Optical and Digital Techniques for Information Security. Advanced Sciences and Technologies for Security Applications, vol 1. Springer, New York, NY . https://doi.org/10.1007/0-387-25096-4_9

Download citation

Publish with us

Policies and ethics