Skip to main content

Pediatric Visual Electrophysiology

  • Chapter
Handbook of Pediatric Retinal Disease
  • 851 Accesses

Abstract

Visual electrodiagnostic tests can contribute significantly to pediatric ophthalmology. The tests are objective, safe, relatively swift, and easy to administer. They can give unique insight into the functional integrity of different levels of the visual pathway. The electroretinogram (ERG) indicates retinal function, the electro-oculogram (EOG) expresses pigment epithelium function, and the visual evoked potential (VEP ) reflects optic pathway function beyond the eye to the visual cortex. These tests complement, and supplement, other visual methods of assessment. Thus,depending on the clinical context, an abnormal ERG may suggest the necessity for metabolic screening, and an abnormal VEP in association with a normal ERG can indicate the need for structural imaging studies.

In Memoriam: On October 5, 2001, Dr. Kriss passed away after a long illness. Despite the gravity of his ill health, Dr. Kriss worked hard to finish this chapter and submitted it one week before his death. His tenacity in completing this definitive work on Pediatric Electrophysiology is a testament to his passion for this field. I have known Dr. Kriss professionally for almost 20 years and have the highest respect for his research, teaching, and clinical abilities. This chapter exemplifies Dr. Kriss’ commitment to excellence, attention to detail, and his world-class expertise in the field of Pediatric Electrophysiology. It is my honor and privilege to include his chapter in this second edition by Kenneth W. Wright, MD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acland G, Aguirre G, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001;28(1):92–95.

    Article  PubMed  CAS  Google Scholar 

  2. Agamanolis D, Chester E, Victor M, et al. Neuropathology of experimental vitamin B12 deficiency in monkeys. Neurology 1976;26:905–914.

    PubMed  CAS  Google Scholar 

  3. Alani S. Pattern-reversal visual evoked potentials in patients with hydrocephalus. J Neurosurg 1985;62(2):234–237.

    PubMed  CAS  Google Scholar 

  4. Allen D, Tyler C, Norcia A. Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant. Vision Res 1996;36(13):1945–1953.

    Article  PubMed  CAS  Google Scholar 

  5. Apkarian P. Electrodiagnosis in paediatric ophthalmogenetics. Int J Psychophysiol 1994;16(2–3):229–243.

    Article  PubMed  CAS  Google Scholar 

  6. Apkarian P, Bour L, Bart P. A unique achiasmatic anomaly detected in non-albinos with misrouted retinal fugal projections. Eur J Neurosci 1994;6:501–507.

    Article  PubMed  CAS  Google Scholar 

  7. Apkarian P, Spekreijse H. The use of the electroretinogram and visual evoked potentials in ophthalmogenetics. In: Desmedt JE (ed) Visual evoked potentials. Amsterdam: Elsevier, 1990:169–223.

    Google Scholar 

  8. Apkarian P, Reits D, Spekreijse H. Component specificity in albino VEP asymmetry: maturation of the visual pathway anomaly. Exp Brain Res 1984;53:285–294.

    Article  PubMed  CAS  Google Scholar 

  9. Arden G, Kelsey J. Changes produced by light in the standing potential of the human eye. J Physiol 1962;61:189–204.

    Google Scholar 

  10. Arden G, Wolf J, Singbarti F, et al. Effect of alcohol and light on the retinal pigment epithelium of normal subjects and patients with retinal dystrophies. Br J Ophthalmol 2000;84(8):881–883.

    Article  PubMed  CAS  Google Scholar 

  11. Arndt C, Derambure P, Defoort-Dhellemmes S, et al. Outer retinal dysfunction in patients treated with vigabatrin. Neurology 1999;52(6):1201–1205.

    PubMed  CAS  Google Scholar 

  12. Bach M, Hyalina M, Holder G, et al. Standard for pattern electroretinography. Doc Ophthalmol 2000;101:11–18.

    Article  PubMed  CAS  Google Scholar 

  13. Backhouse O, Leitch R, Thompson D, et al. A case of reversible blindness in maple syrup urine disease [letter]. Br J Ophthalmol 1999;83(2):250–251.

    PubMed  CAS  Google Scholar 

  14. Barrett G, Blumhardt L, Halliday A, et al. A paradox in the lateralization of the visual evoked response. Nature (Lond) 1976;261:253–255.

    Article  Google Scholar 

  15. Bayer A, Zrenner E, Ried S, et al. Effect of anticonvulsant drugs on retinal function. Pyschophysical and electrophysiological findings in patients with epilepsy. Investig Ophthalmol Vis Sci 1990;31:427.

    Google Scholar 

  16. Beales P, Elcioglu N, Woolf A, et al. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 1999;36(6):437–446.

    PubMed  CAS  Google Scholar 

  17. Bech-Hansen NT, Naylor M, Maybaum T, et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 2000;26(3):319–323.

    Article  PubMed  CAS  Google Scholar 

  18. Berson E. Nutrition and retinal generations. Int Ophthalmol Clin 2000;40(4):93–111.

    Article  PubMed  CAS  Google Scholar 

  19. Berson E. Electrical phenomena in the retina. In: Hart WH (ed) Adler’s physiology of the eye: clinical application. St. Louis: Mosby Yearbook, 1992:641–707.

    Google Scholar 

  20. Birch E, Fawcett S, Stager D. Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Investig Ophthalmol Vis Sci 2000;41:1719–1723.

    CAS  Google Scholar 

  21. Birch E, Birch D, Uauy R. Retinal and cortical function of very low birthweight infants at 36 and 57 weeks post conception. Clin Vis Res 1990;5:363–373.

    Google Scholar 

  22. Blumhardt L, Barratt G, Kriss A, et al. The pattern-evoked potential in lesions of the posterior visual pathways. Ann NY Acad Sci 1982;388:264–289.

    Article  PubMed  CAS  Google Scholar 

  23. Bodis-Wollner I. Recovery from cerebral blindness: evoked potential and psychophysical measurements. Electroencephalogr Clin Neurophysiol 1977;42(2):178–184.

    Article  PubMed  CAS  Google Scholar 

  24. Boycott K, Maybaum T, Naylor M, et al. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum Genet 2001;108(2):91–97.

    Article  PubMed  CAS  Google Scholar 

  25. Bradshaw K, George N, Moore A, et al. Mutations of the XLRS1 gene causing abnormalities of photoreceptor as well as inner retinal responses of the ERG. Doc Ophthalmol 1999;98:153–173.

    Article  PubMed  CAS  Google Scholar 

  26. Brecelj J, Stirn-Kranjc B, Skrbec M. Visual electrophysiology in children with tumors affecting the visual pathways. Doc Ophthalmol 2000;101:125–154.

    Article  PubMed  CAS  Google Scholar 

  27. Brecelj J. Electrodiagnosis of chiasmal compressive lesions. Int J Psychophysiol 1994;16:263–272.

    Article  PubMed  CAS  Google Scholar 

  28. Breton M, Schueller A, Lamb T, et al. Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of photo-transduction. Investig Ophthalmol Vis Sci 1994;35(1):295–309.

    CAS  Google Scholar 

  29. Breton M, Quinn G, Schueller A. Development of electroretinogram and rod phototransduction response in human infants. Investig Ophthalmol Vis Sci 1995;36(8):1588–1602.

    CAS  Google Scholar 

  30. Campbell F, Gubisch R. Optical quality of the human eye. J Physiol 1966;186(3):558–578.

    PubMed  CAS  Google Scholar 

  31. Campbell F, Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 1970;207(3):635–652.

    PubMed  CAS  Google Scholar 

  32. Carroll W, Mastaglia F. Leber’s optic neuropathy: a clinical and visual evoked potential study of affected and asymptomatic members of a six-generation family. Brain 1979;1102:559–580.

    Article  Google Scholar 

  33. Carroll W, Kriss A, Baraitser M, et al. The incidence and nature of visual pathway involvement in Friedreich’s ataxia: a clinical and visual evoked potential study of 22 patients. Brain 1980;103:413–434.

    Article  PubMed  CAS  Google Scholar 

  34. Celesia G, Archer C, Kurroiwa Y, et al. Visual function of the extrageniculate-calcarine system in man. Arch Neurol 1980;37:704–706.

    PubMed  CAS  Google Scholar 

  35. Celesia G, Brigell M. Recommended standards for pattern electroretinograms and visual evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 1999;52:53–67.

    PubMed  CAS  Google Scholar 

  36. Celesia G, Brigell M, Peachey N. Recommended standards for electroretinograms. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 1999;52:45–52.

    PubMed  CAS  Google Scholar 

  37. Celesia G, Meredith J, Pluff K. Perimetry, visual evoked potentials spectrum in homonymous hemianopsia. Electroencephalogr Clin Neurophysiol 1983;56:16–30.

    Article  PubMed  CAS  Google Scholar 

  38. Chokroverty S, Duvoisin R, Sachdeo R, et al. Neurophysiologic study of olivopontocerebellar atrophy with or without glutamate dehydrogenase deficiency. Neurology 1985;35:652–659.

    PubMed  CAS  Google Scholar 

  39. Cibis G, Fitzgerald K, Harris D, et al. The effects of dystrophin gene mutations on the ERG in mice and humans. Investig Ophthalmol Vis Sci 1993;34(13):3646–3652.

    CAS  Google Scholar 

  40. Cibis G, Fitzgerald K. Abnormal electroretinogram associated with developmental brain anomalies. Trans Am Ophthalmol Soc 1995;93:147–158;discussion 158–161.

    PubMed  CAS  Google Scholar 

  41. Cicedyian A, Jacobsen S. Negative electroretinograms in retinitis pigmentosa. Investiag Ophthalmol Vis Sci 1993;34:3253–3263.

    Google Scholar 

  42. Cohen S, Brown F, Martyn L, et al. Ocular histopathologic and biochemical studies of the cerebrohepatorenal syndrome (Zellweger’s syndrome) and its relationship to neonatal adrenoleucodystrophy. Am J Ophthalmol 1983;96:488–501.

    PubMed  CAS  Google Scholar 

  43. Creel D, Bendel C, Wiesner G, et al. Abnormalities of the central visual pathways in Prader-Willi syndrome associated with hypopigmentation. N Engl J Med 1986;314(25):1606–1609.

    PubMed  CAS  Google Scholar 

  44. Creel D, Spekreijse H, Reits D. Evoked potentials in albinos: efficacy of pattern stimulation in detecting misrouted optic fibres. Electroencephalogr Clin Neurophysiol 1981;52:595–603.

    Article  PubMed  CAS  Google Scholar 

  45. Crews S, Thompson C, Harding G. The ERG and VEP in patients with severe eye injury. Doc Ophthalmol 1978;15:203–209.

    Google Scholar 

  46. Dekaban A. Hereditary syndrome of congenital blindness (Leber), polycystic kidneys and maldevelopment of the brain. Am J Ophthalmol 1969;689:1029–1036.

    Google Scholar 

  47. Dell’Osso L. Seesaw nystagmus in dogs and humans: an international, across discipline, serendipitous collaboration. Neurology 1996;47:1372–1374.

    PubMed  CAS  Google Scholar 

  48. De Vries Khoe L, Spekreijse H. Maturation of luminance and pattern EPs in man. Doc Ophthalmol 1982;31:461–475.

    Google Scholar 

  49. Dorfman L, Nikoskelianen E, Rosenthal A, et al. Visual evoked potentials in Leber’s optic neuropathy. Ann Neurol 1977;1:565–568.

    Article  PubMed  CAS  Google Scholar 

  50. Drasdo N, Edwards L, Thompson D. Models of the visual cortex based on visual evoked potentials. In: Gulyas B, Ottoson D, Roland P (eds) Functional organization of the human visual cortex. Wenner Gren international series, vol 61. Oxford: Pergamon Press, 1993:255–270.

    Google Scholar 

  51. Drasdo N, Thompson D, Arden G. A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vis Sci 1990;5:415–420.

    Google Scholar 

  52. Eke T, Talbot J, Lawden M. Severe persistent visual field constriction associated with vigabatrin [see comments]. Br Med J 1997;314(7075):180–181.

    CAS  Google Scholar 

  53. Esakowitz L, Kriss A, Shawkat F. A comparison of flash electroretinograms recorded from Burian Allen, JET, C-Glide, gold foil, DTL, and skin electrodes. Eye 1993;7:169–171.

    PubMed  Google Scholar 

  54. Fagan E, Taylor M. Longitudinal multimodal evoked potential studies in abetalipoproteinaemia. Can J Neurol Sci 1987;14:617–621.

    PubMed  CAS  Google Scholar 

  55. Farley M, Heckenlively J. Blue cone monochromatism. In: Heckenlively J, Arden G (eds) Principles and practice of clinical electrophysiology of vision. St. Loius: Mosby, 1991:753–755.

    Google Scholar 

  56. Fellman D, Van Essen D. Distributed hierarchical processing in the primate visual cortex. Cereb Cortex 1991;1:1–47.

    Article  Google Scholar 

  57. Fitzgerald K, Hashimoto T, Hug T, et al. Autosomal dominant inheritance of a negative electroretinogram in three generations. Am J Ophthalmol 2001;131(4):495–502.

    Article  PubMed  CAS  Google Scholar 

  58. Fitzgerald K, Cibis G, Giambrone S, et al. Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor depolarising bipolar cell pathway. J Clin Investig 1994;93:2425–2430.

    Article  PubMed  CAS  Google Scholar 

  59. Flanagan J, Harding G. Multichannel visual evoked potentials in early compressive lesions of the optic chiasm. Doc Ophthalmol 1987;69:271–282.

    Article  Google Scholar 

  60. Flaxel C, Jay M, Thiselton D, et al. Difference between RP2 and RP3 phenotypes in X linked retinitis pigmentosa. Br J Ophthalmol 1999;83(10):1144–1148.

    PubMed  CAS  Google Scholar 

  61. Fulton A, Hansen R, Glynn R. Natural course of visual functions in the Bardet-Biedl syndrome. Arch Ophthalmol 1993;111(11):1500–1506.

    PubMed  CAS  Google Scholar 

  62. Fulton A, Hansen R. Electroretinography: application to clinical studies of infants. J Pediatr Ophthalmol Strabismus 1985;22(6):251–255.

    PubMed  CAS  Google Scholar 

  63. Fulton A, Hartmann E, Hansen R. Electrophysiological testing techniques for children. Doc Ophthalmol 1989;71:341–354.

    Article  PubMed  CAS  Google Scholar 

  64. Galloway N. Electrophysiological testing of eyes with opaque media. Eye 1988;2:615–624.

    PubMed  Google Scholar 

  65. Garbern J, Cambi F, Shy M, et al. The molecular pathogenesis of Pelizaeus-Merzbacher disease. Arch Neurol 1999;56(10):1210–1214.

    Article  PubMed  CAS  Google Scholar 

  66. Garner A, Fielder A, Primavesi R, et al. Tapetoretinal degeneration in the cerebro-hepato-renal (Zellweger) syndrome. Br J Ophthalmol 1982;66:422–431.

    PubMed  CAS  Google Scholar 

  67. Gerritsen E, Vossen J, van Loo, et al. Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. Pediatrics 1994;93:247–253.

    PubMed  CAS  Google Scholar 

  68. Givre S, Schroeder C, Arezzo J. Contribution of extra striate area V4 to the surface recorded flash VEP in the awake macaque. Vision Res 1994;34:415–428.

    Article  PubMed  CAS  Google Scholar 

  69. Gottlob I, Fendick M, Guo S, et al. Visual acuity measurements by swept spatial frequency visual-evoked-cortical potentials (VECPs): clinical application in children with various visual disorders. J Pediatr Ophthalmol Strabismus 1990;27(1):40–47.

    PubMed  CAS  Google Scholar 

  70. Granit R. Sensory mechanisms of the retina. London: Oxford University Press, 1947.

    Google Scholar 

  71. Grant C, Berson E. Treatable forms of retinitis pigmentosa associated with systemic neurological disorders. Int Ophthalmol Clin 2001;41(1):103–110.

    Article  PubMed  CAS  Google Scholar 

  72. Grieshaber M, Boltshauser E, Niemeyer G. Leber’s congenital amaurosis. Clinical heterogeneity and electroretinography in 27 patients. In: Hollyfield X, et al. (eds) Retinal degenerative diseases and experimental therapy. New York: Kluwer, 1999:95–104.

    Google Scholar 

  73. Groswasser Z, Kriss A, Halliday AM, et al. Pattern and flash evoked potentials in the assessment and management of optic nerve gliomas. J Neurol Neurosurg Psychiatry 1985;48:1125–1134.

    PubMed  CAS  Google Scholar 

  74. Grover S, Fishman G, Anderson R, et al. A longitudinal study of visual function in carriers of X-linked recessive retinitis pigmentosa. Ophthalmology 2000;107(2):386–396.

    Article  PubMed  CAS  Google Scholar 

  75. Haegerstrom-Portnoy G, Schneck M, Verdon W, et al. Clinical vision characteristics of the congenital achromatopsias. II. Color vision. Optom Vis Sci 1996;73(7):457–465.

    Article  PubMed  CAS  Google Scholar 

  76. Haegerstrom-Portnoy G, Schneck M, Verdon W, et al. Clinical vision characteristics of the congenital achromatopsias. I. Visual acuity, refractive error, and binocular status. Optom Vis Sci 1996;73(7):446–456.

    Article  PubMed  CAS  Google Scholar 

  77. Haider N, Jacobsen S, Cideciyan A, et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced cone syndrome, a disorder of retinal cell fate. Nat Genet 2000;24:127–131.

    Article  PubMed  CAS  Google Scholar 

  78. Halliday A. Evoked potentials in clinical testing, 2nd edn. Edinburgh: Churchill Livingstone, 1993.

    Google Scholar 

  79. Halliday A, Barrett G, Blumhardt L, et al. The macular and paramacular components of the pattern evoked response. In: Lehmann D, Calloway E (eds) Human evoked potentials: applications and problems. New York: Plenum Press, 1979:135–151.

    Google Scholar 

  80. Halliday A, McDonald W, Mushin J. Delayed pattern evoked responses in optic neuritis in relation to visual acuity. Trans Ophthalmol Soc UK 1973;93:315–324.

    PubMed  CAS  Google Scholar 

  81. Halliday A, Kriss A, Cuendent F, et al. Childhood optic neuritis: a study of flash and pattern evoked potentials. In: Gallai V (ed) Maturation of the CNS and evoked potentials. Amsterdam: Elsevier, 1986:41–50.

    Google Scholar 

  82. Hamer R, Norcia A, Tyler C, et al. The development of monocular and binocular VEP acuity. Vision Res 1989;29(4):397–408.

    Article  PubMed  CAS  Google Scholar 

  83. Harden A, Pampiglione G. Neurophysiological studies (EEG/ERG/VEP/SEP) in 88 children with so-called neuronal ceroid lipofuscinosis. In: Armstrong D, Koppang N, Rider JA (eds) Ceroid lipofuscinosis (Batten’s disease). Amsterdam: Elsevier, 1982:61–70.

    Google Scholar 

  84. Harding G, Wild J, Robertson K, et al. Separating the retinal electrophysiologic effects of vigabatrin: treatment versus field loss [see comments]. Neurology 2000;55(3):347–352.

    PubMed  CAS  Google Scholar 

  85. Harding G, Wild J, Robertson K, et al. Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 2000;41(11):1420–1431.

    Article  PubMed  CAS  Google Scholar 

  86. Harding G, Crews S. The VER in hereditary optic atrophy of the dominant type. In: Mauguiere F, Courjon F (eds) The clinical applications of evoked potentials in neurology. New York: Raven Press, 1982:21–30.

    Google Scholar 

  87. Harding G, Williams D, Innes J. The visual evoked potentials and psychophysics during ethambutol therapy. In: Nodar RH, Barber C (eds) Evoked potentials, vol ll. Boston: Butterworth, 1984:339–344.

    Google Scholar 

  88. Harris C. Nystagmus and eye movement disorders. In: Taylor D (ed) Pediatric ophthalmology. Oxford: Blackwell, 1997:869–896.

    Google Scholar 

  89. Hawksworth N, Headland S, Good P, et al. Aland Island eye disease: clinical and electrophysiological studies of a Welsh family. Br J Ophthalmol 1995;79(5):424–430.

    PubMed  CAS  Google Scholar 

  90. Holder G. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. In: Fishman GA, Birch D, Holder GE, Brigell M (eds) Electrophysiological testing in disorders of retinal optic nerve, and visual pathway. 2001.

    Google Scholar 

  91. Hood D, Birch D. Abnormalities of the retinal cone system in retinitis pigmentosa. Vision Res 1996;36(11):1699–1709.

    Article  PubMed  CAS  Google Scholar 

  92. Hood D, Birch D. Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: applications and methods. Doc Ophthalmol 1996–97;92(4):253–267.

    Article  PubMed  Google Scholar 

  93. Hoyt C, Billson F. Visual loss in osteopetrosis. Am J Dis Child 1979;133:955–958.

    PubMed  CAS  Google Scholar 

  94. Hutton W, Fuller D. Factors influencing final visual results in severely injured eyes. Am J Ophthalmol 1984;97:715–722.

    PubMed  CAS  Google Scholar 

  95. Iannoccone A, De-Propris G, Roncati S, et al. The ocular phenotype of the Bardet-Biedl syndrome. Comparison to non-syndromic retinitis pigmentosa. Ophthalmic Genet 1997;18:13–26.

    Google Scholar 

  96. Jabbari B, Maitland C, Morris L, et al. The value of visual evoked potential as a screening test in neurofibromatosis. Arch Neurol 1985; 42:1072–1074.

    PubMed  CAS  Google Scholar 

  97. Jacobs M, Shawkat F, Harris C, et al. Eye movement and electrophysiological findings in an infant with hemispheric pathology. Dev Med Child Neurol 1993;35(5):431–435.

    PubMed  CAS  Google Scholar 

  98. Jeffreys D, Axford J. Source localisations of pattern-specific components of human visual evoked potentials l. Component of striate cortical origin. Exp Brain Res 1972;6:1–21.

    Google Scholar 

  99. Jeffreys D, Axford J. Source localisations of pattern-specific components of human visual evoked potentials. ll. Component of extrastriate cortical origin. Exp Brain Res 1972;6:22–40.

    Google Scholar 

  100. Jensen H, Warburg M, Sjo O, et al. Duchenne muscular dystrophy: negative electroretinograms and normal dark adaptation. Reappraisal of assignment of X-linked incomplete congenital stationary night blindness. J Med Genet 1995;32(5):348–351.

    PubMed  CAS  Google Scholar 

  101. Jiang C, Hansen R, Gee B, et al. Rod and rod mediated function in patients with beta-thalassemia major. Doc Ophthamol 1998–99; 96(4):333–345.

    Article  Google Scholar 

  102. Joubert M, Eisenring J, Robb J, et al. Familial agenesis of the cerebellar vermis: a syndrome of episodic hyperapnea, abnormal eye movements, ataxia, and retardation. 1969 [classical article]. J Child Neurol 1999;14(9):554–564.

    PubMed  CAS  Google Scholar 

  103. Keith C. Retinal atrophy in osteopetrosis. Arch Ophthalmol 1968;79:234–241.

    PubMed  CAS  Google Scholar 

  104. Kellner U, Weleber R, Kennaway N, et al. Gyrate atrophy-like phenotype with normal plasma ornithine. Retina 1997;17(5):403–413.

    PubMed  CAS  Google Scholar 

  105. Kellner U, Foerster M. Cone dystrophies with negative photopic electroretinogram. Br J Ophthalmol 1993;77(7):404–409.

    PubMed  CAS  Google Scholar 

  106. Klevering B, van-Driel M, van de Pol D, et al. Phenotypic variations in a family with retinal dystrophy as result of different mutations in the ABCR gene. Br J Ophthalmol 1999;83(8):914–918.

    PubMed  CAS  Google Scholar 

  107. Kondo M, Sieving P. Primate photopic sine-wave flicker ERG: vector modeling and component origins using glutamate analogs. Investig Ophthalmol Vis Sci 2001;42(1):305–312.

    CAS  Google Scholar 

  108. Kraemer M, Abrahamsson M, Sjostrum A. The neonatal development of the light flash visual evoked potential. Doc Ophthalmol 1999;99:21–39.

    Article  PubMed  CAS  Google Scholar 

  109. Krauss G, Johnson M, Miller N. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings [see comments]. Neurology 1998;51(6):1778–1779; discussion 1779–1781.

    Google Scholar 

  110. Kretschmann U, Seeliger M, Ruether K, et al. Multifocal electroretinography in patients with Stargardt’s macular dystrophy. Br J Ophthalmol 1998;82(3):267–275.

    Article  PubMed  CAS  Google Scholar 

  111. Kriss A, Thompson D, Lavy T, et al. Pattern VEPs and craniopharyngiomas in children. Investig Ophthalmol Vis Sci 1996;37:1075.

    Google Scholar 

  112. Kriss A, Russell-Eggitt I, Harris C, et al. Aspects of albinism. Ophthalmol Paediatr Genet 1992;13:89–100.

    CAS  Google Scholar 

  113. Kriss A, Thompson D, Lloyd I, et al. Pattern VEP findings in young children treated for unilateral congenital cataract. In: Cottlier E (ed) Congenital cataracts. Austin: Landes, 1994:79–88.

    Google Scholar 

  114. Kriss A, Carroll W, Blumhardt L, et al. Pattern and flash evoked potential changes in toxic (nutritional) optic neuropathy. In: Courjon J, Maugiere F, Revol M (eds) Clinical applications of evoked potentials in neurology. Advances in neurology, vol 32. New York: Raven Press, 1982:11–19.

    Google Scholar 

  115. Kriss A, Francis D, Cluendet F, et al. Recovery from optic neuritis in childhood. J Neurol Neurosurg Psychiatry 1988;51:1253–1258.

    PubMed  CAS  Google Scholar 

  116. Kriss A, Thompson D. Visual electrophysiology. In: Taylor D (ed) Pediatric ophthalmology. Oxford: Blackwell, 1997:93–121.

    Google Scholar 

  117. Kriss A, Russell-Eggitt I. Electrophysiological assessment of visual pathway function in infants. Eye 1992;6:145–153.

    PubMed  Google Scholar 

  118. Kriss A, Russell-Eggitt I, Harris C, et al. Aspects of albinism. Ophthalmol Paediatr Genet 1992;13:89–100.

    CAS  Google Scholar 

  119. Kubova Z, Kuba M. Clinical application of motion onset potentials. Doc Ophthalmol 1992;81:209–218.

    Article  PubMed  CAS  Google Scholar 

  120. Kupersmith M, Siegel I, Carr R, et al. Visual evoked potentials in chiasmal gliomas in four adults. Arch Neurol 1981;38:362–366.

    PubMed  CAS  Google Scholar 

  121. Lachapelle P, Rousseau S, McKerral M, et al. Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 1998;95(1):35–54.

    Article  PubMed  CAS  Google Scholar 

  122. Lachapelle P, Little J, Polomeno R. The photopic electroretinogram in congenital stationary night blindness with myopia. Investig Ophthalmol Vis Sci 1983;24:442–450.

    CAS  Google Scholar 

  123. Lambert R, Kriss A, Taylor D. Delayed visual maturation; a longitudinal clinical and electrophysiological assessment. Ophthalmology 1989;96:534–529.

    Google Scholar 

  124. Lambert S, Taylor D, Kriss A. The infant with nystagmus, normal appearing fundi but an abnormal ERG. Surv Ophthalmol 1989;34: 176–186.

    Article  Google Scholar 

  125. Lambert S, Kriss A, Taylor D. Detection of isolated occipital lobe anomalies during early childhood. Dev Med Child Neurol 1990;32(5):451–455.

    PubMed  CAS  Google Scholar 

  126. Lambert S, Kriss A, Taylor D. Joubert syndrome. Arch Ophthalmol 1989;107:709–713.

    PubMed  CAS  Google Scholar 

  127. Lambert S, Taylor D, Kriss A, et al. Follow-up and diagnostic reappraisal of 75 patients with Leber’s congenital amaurosis. Am J Ophthalmol 1989;107:624–631.

    PubMed  CAS  Google Scholar 

  128. Lang G, Maumenee I. Retinal dystrophies associated with storage diseases. In: Newsome DA (ed) Retinal dystrophies and degenerations. New York: Raven Press, 1988:319–340.

    Google Scholar 

  129. Lavy T, Harris C, Shawkat F, et al. Electrophysiological and eye movement abnormalities in children with the Bardet-Biedl syndrome. J Pediatr Ophthalmol Strabismus 1995;32(6):364–367.

    PubMed  CAS  Google Scholar 

  130. Lei B, Bush R, Milam A, et al. Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo. Investig Ophthalmol Vis Sci 2000;41(1): 262–266.

    CAS  Google Scholar 

  131. Lennerstrand G. Delayed visual evoked cortical potentials in retinal disease. Acta Ophthalmol (Copenh) 1982;60:497–504.

    Article  CAS  Google Scholar 

  132. Livingstone M, Hubel D. Segregation of form, colour, movement and depth: anatomy, physiology and perception. Science 1988;240:740–750.

    Article  PubMed  CAS  Google Scholar 

  133. Lois N, Holder G, Bunce C, et al. Phenotypic subtypes of Stargardt’s macular dystrophy-fundus flavimaculatus. Arch Ophthalmol 2001;119(3):359–369.

    PubMed  CAS  Google Scholar 

  134. Lorenz B, Gampe E. Analyse von 180 Patienten mit sensorischem Defektnystagmus (SDN) und kongenitalem idiopathischen Nystagmus (CIN). [Analysis of 180 patients with sensory defect nystagmus (SDN) and congenital idiopathic nystagmus (CIN).] Klin Monatsbl Augenheilkd 2001;218(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  135. Mandelbaum S, Cleary P, Ruan S, et al. Bright flash electroretinography and vitreous haemorrhage. Arch Ophthalmol 1980;98:1823–1828.

    PubMed  CAS  Google Scholar 

  136. Marg E, Freeman D, Peltzman P, et al. Visual acuity development in human infants: evoked potential measurements. Investig Ophthalmol Vis Sci 1976;15:150–153.

    Google Scholar 

  137. Markwardt F, Gopfert E, Muller R. Influence of velocity, temporal frequency and initial phase position of gratings on the motion VEP. Biomed Biochim Acta 1988;47:753–760.

    PubMed  CAS  Google Scholar 

  138. Marmor M, Jacobsen S, Foerster M, et al. Diagnostic findings of a new syndrome with night blindness, maculopathy, and enhanced s cone sensitivity. Am J Ophthalmol 1990;110:124–134.

    PubMed  CAS  Google Scholar 

  139. Maugeri A, Klevering B, Rohrschneider K, et al. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 2000;67(4):960–966.

    Article  PubMed  CAS  Google Scholar 

  140. McCulloch D, Skarf B. Pattern reversal visual evoked potentials following early treatment of unilateral, congenital cataract [see comments]. Arch Ophthalmol 1994;112(4):510–518.

    PubMed  CAS  Google Scholar 

  141. McCulloch D, Orbach H, Skarf B. Maturation of the pattern reversal VEP in human infants: a theoretical framework. Vision Res 1999;39:3673–3680.

    Article  PubMed  CAS  Google Scholar 

  142. Merigan W. P and M pathway specialisation in the macaque. In: Valberg A, Lee B (eds) From pigments to perception: advances in understanding visual processes. NATO ASI series no. 203. New York: Plenum Press, 1991;117–125.

    Google Scholar 

  143. Miyake Y, Horiguchi M, Suzuki S, et al. Electrophysiological findings in patients with Oguchi’s disease. Jpn J Ophthalmol 1996;40(4):511–519.

    PubMed  CAS  Google Scholar 

  144. Miyake Y, Horiguchi M, Terasaki H, et al. Scotopic threshold response in complete and incomplete types of congenital stationary night blindness. Investig Ophthalmol Vis Sci 1994;35:3770–3775.

    CAS  Google Scholar 

  145. Miyake Y, Yagasaki K, Horiguchi M, et al. Congenital stationary night blindness with a negative electroretinogram: a new classification. Arch Ophthalmol 1986;104:1013–1020.

    PubMed  CAS  Google Scholar 

  146. Miyake Y, Shiroyama N, Horiguchi M, et al. Bull’s eye maculopathy and negative electroretinograms. Retina 1989;9:210–215.

    PubMed  CAS  Google Scholar 

  147. Mohri I, Taniike M, Fujimura H, et al. A case of Kearns-Sayre syndrome showing a constant proportion of deleted mitochondrial DNA in blood cells during 6 years of follow-up. J Neurol Sci 1998;158(1): 106–109.

    Article  PubMed  CAS  Google Scholar 

  148. Moskowitz A, Sokol S. Spatial and temporal interaction of patternevoked cortical potentials in human infants. Vision Res 1980;20(8): 699–707.

    Article  PubMed  CAS  Google Scholar 

  149. Mullie M, Harding A, Petty R, et al. The retinal manifestations of mitochondrial myopathy: a study of 22 cases. Arch Ophthalmol 1985;103:1825–1830.

    PubMed  CAS  Google Scholar 

  150. Multifocal electroretinography: special issue. The multifocal technique: topographic ERG and VEP responses. Doc Ophthalmol 2001;100:49–251.

    Google Scholar 

  151. Nakamura M, Ito S, Terasaki H, et al. Novel CACNA1F mutations in Japanese patients with incomplete congenital stationary night blindness. Investig Ophthalmol Vis Sci 2001;42(7):1610–1616.

    CAS  Google Scholar 

  152. Niemeyer G. Pharmacological effects in retinal electrophysiology. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. St. Louis: Mosby, 1991:151–162.

    Google Scholar 

  153. Norcia A, Tyler C, Hamer R, et al. Measurement of spatial contrast sensitivity with the swept contrast VEP. Vision Res 1989;29(5):627–637.

    Article  PubMed  CAS  Google Scholar 

  154. Norcia A, Tyler C. Infant VEP acuity measurements: analysis of individual differences and measurement error. Electroencephalogr Clin Neurophysiol 1985;61(5):359–369.

    Article  PubMed  CAS  Google Scholar 

  155. Norcia A, Tyler C. Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res 1985;25(10):1399–1408.

    Article  PubMed  CAS  Google Scholar 

  156. Norcia A, Garcia H, Humphrey R, et al. Anomalous motion VEPs in infants and infantile esotropia. Investig Ophthalmol Vis Sci 1991;32:436–439.

    CAS  Google Scholar 

  157. Novack G. Ocular toxicology. Curr Opin Ophthalmol 1997;8(6):88–92.

    Article  PubMed  CAS  Google Scholar 

  158. Nusinowitz S, Birch D, Birch E. Rod photoresponses in 6-week and 4-month-old human infants. Vision Res 1998;38(5):627–635.

    Article  PubMed  CAS  Google Scholar 

  159. Nuwer M, Perlman S, Packwood J, et al. Evoked potential abnormalities in the various inherited ataxia. Ann Neurol 1983;13:20–27.

    Article  PubMed  CAS  Google Scholar 

  160. Orel-Bixler D, Norcia A. Differential growth for steady state pattern reversal and transient onset offset VEPs. Clin Vis Sci 1987;2:1–10.

    Google Scholar 

  161. Orel-Bixler D, Haegerstrom-Portnoy G, Hall A. Visual assessment of the multiply handicapped patient. Optom Vis Sci 1989;66(8):530–536.

    Article  PubMed  CAS  Google Scholar 

  162. Ossenblock P, Spekreijse H. The extra-striate generators of the EP to checkerboard onset. A source localisation approach. Electroencephalogr Clin Neurophysiol 1991;80:181–193.

    Article  Google Scholar 

  163. Palczewski K. Is vertebrate phototransduction solved? New insights into the molecular mechanism of phototransduction. Investig Ophthalmol Vis Sci 1994;35(10):3577–3581.

    CAS  Google Scholar 

  164. Papaioannou M, Ocaka L, Bessant D, et al. An analysis of ABCR mutations in British patients with recessive retinal dystrophies. Investig Ophthalmol Vis Sci 2000;41(1):16–19.

    CAS  Google Scholar 

  165. Papakostopoulos D, Hart C, Cooper R, et al. Combined electrophysiological assessment of the visual system in central serous retinopathy. Electroencephalogr Clin Neurophysiol 1984;59(1):77–80.

    Article  PubMed  CAS  Google Scholar 

  166. Patel C, Taylor D, Russell-Eggitt I, et al. Congenital third nerve palsy associated with mid-trimester amniocentesis. Br J Ophthalmol 1993;77:530–533.

    PubMed  CAS  Google Scholar 

  167. Pepperberg D, Birch D, Hood D. Photoresponses of human rods derived from paired flash ERGs. Vis Neurosci 1997;14:73–82.

    PubMed  CAS  Google Scholar 

  168. Poggi-Travert F, Fournier B, Poll B, et al. Clinical approach to inherited peroxisomal disorders. J Inherit Metab Dis 1995;18(suppl 1):1–18.

    Article  PubMed  Google Scholar 

  169. Porteous W, James A, Sheard P, et al. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem 1998;257(1):192–201.

    Article  PubMed  CAS  Google Scholar 

  170. Pryds O, Greisen G. Preservation of single flash visual evoked potentials at very low cerebral oxygen delivery in preterm infants. Pediatr Neurol 1990;6:151–158.

    Article  PubMed  CAS  Google Scholar 

  171. Pugh E, Lamb T. Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga DG, de Grip WJ, Pugh EN Jr (eds) Handbook of biological physics, vol 3. Amsterdam: Elsevier, 2000:183–254.

    Google Scholar 

  172. Purvin V, Kawasaki A, Yee R. Papilledema and obstructive sleep apnea syndrome. Arch Ophthalmol 2000;118:1626–1630.

    PubMed  CAS  Google Scholar 

  173. Reardon W, Winter R. The molecular pathology of syndromic craniosynostosis. Mol Med Today 1995:432–437.

    Google Scholar 

  174. Regan D. Human brain electrophysiology. Amsterdam: Elsevier, 1989.

    Google Scholar 

  175. Regan D, Spekreijse H. Evoked potential indicators of colour blindness. Vision Res 1974;14:89–95.

    Article  PubMed  CAS  Google Scholar 

  176. Regan D, Regal D, Tibbles J. Evoked potentials during recovery from blindness recorded serially from an infant and his normally sighted twin. Electroencephalogr Clin Neurophysiol 1982;54:465–468.

    Article  PubMed  CAS  Google Scholar 

  177. Ripps H, Mahaffy L, Siegel I, et al. Vincristine-induced changes in the retina of isolated arterially perfused cat eye. Exp Eye Res 1989;48:771–790.

    Article  PubMed  CAS  Google Scholar 

  178. Robson J, Frishman L. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 1998–99;95(3–4):187–215.

    Article  PubMed  Google Scholar 

  179. Rozet J, Gerber S, Ghazi I, et al. Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt’s disease: evidence of clinical heterogeneity at this locus. J Med Genet 1999;36(6):447–451.

    PubMed  CAS  Google Scholar 

  180. Runge P, Muler D, McAllister J, et al. Oral vitamin E can prevent the retinopathy of abetalipoproteinaemia. Br J Ophthalmol 1986;70: 166–173.

    PubMed  CAS  Google Scholar 

  181. Russell-Eggitt I, Harris M, Kriss A. Delayed visual maturation: an update. Dev Med Child Neurol 1998;40:130–136.

    PubMed  CAS  Google Scholar 

  182. Sandberg M, Wiegel-DiFranco C, Drya T, et al. Clinical expression correlates with location of rhodopsin mutation in dominant retinitis pigmentosa. Investig Ophthalmol Vision Sci 1995;36:1934–1942.

    CAS  Google Scholar 

  183. Schaumberg D, Moyes A, Gomes J, et al. Corneal transplantation in young children with congenital hereditary endothelial dystrophy. Multicenter Pediatric Keratoplasty Study. Am J Ophthalmol 1999;127(4):373–378.

    Article  PubMed  CAS  Google Scholar 

  184. Schroeder C, Tenke C, Givre S, et al. Striate cortical contribution to the surface recorded pattern reversal VEP in the alert monkey. Vision Res 1991;3197(80):1143–1157 [also published erratum Vision Res 191;31 (11):1].

    Article  Google Scholar 

  185. Seiple W, Holopigian K. An examination of VEP response phase. Electroencephalogr Clin Neurophysiol 1989;73(6):520–531.

    Article  PubMed  CAS  Google Scholar 

  186. Sharon D, Bruns G, Mcgee T, et al. X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Investig Ophthalmol Vis Sci 2000;41:2712–2721.

    CAS  Google Scholar 

  187. Sharpe L, Stockman A. Rod pathways: the importance of seeing nothing. Trends Neurosci 1999;22:497–504.

    Article  PubMed  CAS  Google Scholar 

  188. Shawkat F, Kriss A. A study of the effects of contrast change on pattern VEPs, and the transition between onset, reversal and offset modes of stimulation. Doc Ophthalmol 2000;101(1):73–89.

    Article  PubMed  CAS  Google Scholar 

  189. Shepherd A, Saunders K, McCulloch D, et al. Prognostic value of flash visual evoked potentials in preterm infants. Dev Med Child Neurol 1999;41:9–155.

    Article  PubMed  CAS  Google Scholar 

  190. Sieving P. Photopic ON-and OFF-pathway abnormalities in retinal dystrophies. AOS thesis. Trans Am Ophthalmol Soc 1993;LXXXXl:701–773.

    Google Scholar 

  191. Sieving P, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 1994;11:519–532.

    PubMed  CAS  Google Scholar 

  192. Sieving P, Bingham E, Kemp J, et al. Juvenile X-linked retinoschisis from XLRS1 Arg213Trp mutation with preservation of the electroretinogram scotopic b-wave. Am J Ophthalmol 1999;128(2):179–184.

    Article  PubMed  CAS  Google Scholar 

  193. Sieving P, Frishman L, Steinberg R. Scotopic threshold response of proximal retina in cat. J Neurophysiol 1986;5694:1049–1061.

    Google Scholar 

  194. Sigesmund D, Weleber R, Pillers D, et al. Characterization of the ocular phenotype of Duchenne and Becker muscular dystrophy. Ophthalmology 1994;101(5):856–865.

    PubMed  CAS  Google Scholar 

  195. Skoczenski A, Norcia A. Development of VEP vernier acuity and grating acuity in human infants. Investig Ophthalmol Vis Sci 1999;40:2411–2417.

    CAS  Google Scholar 

  196. Smith L, Kriss A, Gregson R, et al. Gaze evoked amaurosis in neuro-fibromatosis type ll. Br J Ophthalmol 1998;82:584–585.

    PubMed  CAS  Google Scholar 

  197. Smith N, Lamb T. The a-wave of the human electroretinogram recorded with a minimally invasive technique. Vision Res 1997;37(21):2943–2952.

    Article  PubMed  CAS  Google Scholar 

  198. Smith R, Berlin C, Hejtmancik J, et al. Clinical diagnosis of the Usher syndromes. Am J Med Genet 1994;50:32–38.

    Article  PubMed  CAS  Google Scholar 

  199. Snead M, Payne S, Barton D, et al. Stickler syndrome: correlation between vitreoretinal phenotypes and linkage to COL 2A1. Eye 1994;8:609–614.

    PubMed  Google Scholar 

  200. Sokol S. Measurements of infant visual acuity from pattern-reversal evoked potentials. Vision Res 1978;18(1):33–39.

    Article  PubMed  CAS  Google Scholar 

  201. Sokol S, Moskowitz A. Comparison of pattern VEPs and preferential-looking behavior in 3-month-old infants. Investig Ophthalmol Vis Sci 1985;26(3):359–365.

    CAS  Google Scholar 

  202. Soong F, Levin A, Westall C. Comparison of techniques for detecting visually evoked potential asymmetry in albinism. J Am Assoc Pediatr Ophthalmol Sci 2000;4:302–310.

    Article  CAS  Google Scholar 

  203. Spileers W, Maes H, Van Hulle M, et al. Contrast modulated steady state evoked potentials (CMSS VEPS) measuring static and dynamic contrast sensitivity. Clin Vis Res 1992;7:93–106.

    Google Scholar 

  204. Sridharan R. Visual evoked potentials in spinocerebellar degenerations. Clin Neurol Neurosurg 1983;85:235–243.

    Article  PubMed  CAS  Google Scholar 

  205. Stanesu Segal B, Evrard P. Zellweger syndrome, retinal involvement. Metab Pediatr Syst Ophthalmol 1989;9:96–99.

    Google Scholar 

  206. Stavrou P, Good P, Misson G, et al. Electrophysiological findings in Stargardt’s-fundus flavimaculatus disease. Eye 1998;12 (pt 6):953–958.

    PubMed  Google Scholar 

  207. Stefan H, Bernatik J, Knorr J. Gesichtsfeldstorungen bei Antiepileptikabehandlung. [Visual field defects due to antiepileptic drugs. Nervenarzt 1999;70(6):552–555.

    Article  PubMed  CAS  Google Scholar 

  208. Strasburger H, Remky A, Murray I, et al. Objective measurement of contrast sensitivity and visual acuity with the steady-state visual evoked potential. Ger J Ophthalmol 1996;5(1):42–52.

    PubMed  CAS  Google Scholar 

  209. Taylor M, McCulloch D. Visual evoked potentials in infants and children. J Clin Neurophysiol 1992;9:357–372.

    PubMed  CAS  Google Scholar 

  210. Taylor M, McCulloch D. The prognostic value of VEPs in young children with acute onset cortical blindness. Pediatr Neurol 1991;7:86–90.

    Article  PubMed  Google Scholar 

  211. Thompson D, Drasdo N. Temporal patterns and the topography of the visual evoked potential. In: Non-invasive assessment of the visual system, vol 1. Tech digest series. Ophthalmology Society of America, 1992;1:150–153.

    Google Scholar 

  212. Thompson D, Kriss A, Chong K, et al. Visual evoked potential evidence of chiasmal hypoplasia. Ophthalmology 1999;106:2354–2361.

    Article  PubMed  CAS  Google Scholar 

  213. Thompson D, Kriss A, Taylor D, et al. Early VEP and ERG evidence of visual dysfunction in autosomal recessive osteopetrosis. Neuropediatrics 1998;29:137–144.

    Article  PubMed  CAS  Google Scholar 

  214. Thompson D, Kriss A, Cottrell S, et al. Visual evoked potential evidence of albino-like chiasmal misrouting in a patient with Angelman syndrome with no ocular features of albinism. Dev Med Child Neurol 1999;41(9):633–638.

    Article  PubMed  CAS  Google Scholar 

  215. Thompson D, Lloyd I, Dowler J, et al. The development of spatial resolution measured by swept VEP and forced choice preferential looking techniques. Investig Ophthamol Vis Sci 1993;34:1354.

    Google Scholar 

  216. Tolhurst D. Separate channels for the analysis of the shape and movement of a moving visual stimulus. J Physiol 1973;231:385–402.

    PubMed  CAS  Google Scholar 

  217. Tremblay F, De Becker I, Cheung C, et al. Visual evoked potentials with crossed asymmetry in incomplete congenital stationary night blindness. Investig Ophthalmol Vis Sci 1996;37:1783–1792.

    CAS  Google Scholar 

  218. Tremblay F, LaRoche R, Shea S, et al. Longitudinal study of the early electroretinographic changes in Alstrom’s syndrome. Am J Ophthalmol 1993;115(5):657–665.

    PubMed  CAS  Google Scholar 

  219. Tremblay F, Laroche R, De-Becker I. The electroretinographic diagnosis of the incomplete form of congenital stationary night blindness. Vision Res 1995;35(16):2383–2393.

    Article  PubMed  CAS  Google Scholar 

  220. Tyler C, Apkarian P, Levi D, et al. Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Investig Ophthalmol Vis Sci 1979;18(7):703–713.

    CAS  Google Scholar 

  221. Tyler C, Apkarian P, Nakayama K. Multiple spatial-frequency tuning of electrical responses from human visual cortex. Exp Brain Res 1978;33(3–4):535–550.

    PubMed  CAS  Google Scholar 

  222. Tzekov R, Locke K, Hood D, et al. Cone and rod phototransduction parameters in retinitis pigmentosa patients. Investig Ophthalmol Vis Sci 2001;42:420.

    Google Scholar 

  223. van-Lith G, Hekkert-Wiebenga W. Cataract, pattern stimulation and visually evoked potentials. Doc Ophthalmol 1983;28; 55(1–2):107–112.

    Article  PubMed  CAS  Google Scholar 

  224. Vigabatrin Paediatric Advisory Group Guideline for prescribing vigabatrin in children has been revised. Br Med J 2000;320:1404.

    Article  Google Scholar 

  225. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retina Eye Res 1998;17(4):485–521.

    Article  CAS  Google Scholar 

  226. Weleber R, Kennaway N. Infantile Refsum’s disease. In: Gold DH, Weingeist TA (eds) The eye in systemic disease. Philadelphia: Lippincott, 1990:409–411.

    Google Scholar 

  227. Weleber R. The dystrophic retina in multisystem disorders: the electroretinogram in neuronal ceroid lipofuscinoses. Eye 1998;12 (pt 3b):580–590.

    PubMed  Google Scholar 

  228. Wendel R, Mannis M, Keltner J. Role of electrophysiologic testing in the preoperative evaluation of corneal transplant patients. Ann Ophthalmol 1984;16(8):788–793.

    PubMed  CAS  Google Scholar 

  229. Wenzel D, Brandl U. Maturation of pattern evoked potentials elicited by checkerboard reversal. Dev Ophthalmol 1984;9:87–93.

    PubMed  CAS  Google Scholar 

  230. Westall C, Paton C, Levin A. Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc Ophthalmol 1999;96:355–379.

    Article  CAS  Google Scholar 

  231. Wild J, Martinez C, Reinshagen G, et al. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999;40(12):1784–1794.

    Article  PubMed  CAS  Google Scholar 

  232. Wilkie A. Craniosynostosis: genes and mechanisms. Hum Mol Genet 1997;6:1647–1656.

    Article  PubMed  CAS  Google Scholar 

  233. Willison H, Muller D, Matthews S, et al. A study of the relationship between neurological function and serum vitamin E concentrations in patients with cystic fibrosis. J Neurol Neurosurg Psychiatry 1985;48:1097–1102.

    PubMed  CAS  Google Scholar 

  234. Wilson W. Peroxisomal disorders. In: Gold DH, Weingeist TA (eds) The eye in systemic disease. Philadelphia: Lippincott, 1990:402–406.

    Google Scholar 

  235. Wohlrab G, Boltshauser E, Schmitt B, et al. Visual field constriction is not limited to children treated with vigabatrin. Neuropediatrics 1999;30(3):130–132.

    Article  PubMed  CAS  Google Scholar 

  236. Wright K, Eriksen K, Shors T. Recording pattern evoked potentials under chloral hydrate sedation. Arch Ophthalmol 1986;104:718–721.

    PubMed  CAS  Google Scholar 

  237. Wright K, Eriksen K, Shors T. Detection of amblyopia with P-VEP during chloral hydrate sedation. J Pediatr Ophthalmol Strabismus 1987;24(4):170–175.

    PubMed  CAS  Google Scholar 

  238. Wright K, Fox B, Shors T, Eriksen K. The use of the PVEP with multiple large check stimuli for quantitating amblyopia in children. Binoc Vis Q 1990;5(1):19–26.

    Google Scholar 

  239. Wright K, Ary J, Shors T, Eriksen K. J Pediatr Ophthalmol Strabismus 1986;23(5):252–257.

    PubMed  CAS  Google Scholar 

  240. Wright K, Fox B, Eriksen K. PVEP evidence of true suppression in adult onset strabismus. J Pediatr Ophthalmol Strabismus 1990;27(4):196–201.

    PubMed  CAS  Google Scholar 

  241. Yiannikas C, Walsh J, McCleod J. Visual evoked potentials in the detection of sub-clinical optic toxic effects secondary to ethambutol. Arch Neurol 1983;40:645–648.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kriss, A., Thompson, D. (2006). Pediatric Visual Electrophysiology. In: Wright, K.W., Spiegel, P.H., Thompson, L.S. (eds) Handbook of Pediatric Retinal Disease. Springer, New York, NY. https://doi.org/10.1007/0-387-27933-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-27933-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-27932-9

  • Online ISBN: 978-0-387-27933-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics