Skip to main content

Comparing Octavolateralis Sensory Systems: What Can We Learn?

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif H, Hassan ES, von Campenhausen C (1990) Sensory performance of blind mexican cavefish after destruction of the canal neuromast. Naturwissenschaften 77: 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Baird RA, Lewis ER (1986) Correspondences between afferent innervation patterns and response dynamics in the bullfrog utricle and lagena. Brain Res 369:48–64.

    Article  PubMed  CAS  Google Scholar 

  • Bass, AH, Bodnar D, Marchaterre M (1999) Complementary explanations for existing phenotypes in an acoustic communication system. In: Hauser MD, Konishi N (eds), The Design of Animal communication. Cambridge, MA: MIT Press, pp. 493–514.

    Google Scholar 

  • Bastian J (1986) Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe. J Neurol 6:553–562.

    CAS  Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47:1043–1056.

    PubMed  CAS  Google Scholar 

  • Bell CC, Meyers JP, Russel CJ (1974) Electric organ discharge patterns during dominance-related behavioral displays in Gnathonemus petersii. J Comp Physiol 92: 201–228.

    Article  Google Scholar 

  • Bell CC, Bodznick D, Montgomery JC, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50:17–31.

    PubMed  Google Scholar 

  • Berman NJ, Maler L (1999) Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency dependent adaptive filtering. J Exp Biol 202:1243–1253.

    PubMed  Google Scholar 

  • Blaxter JHS, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds), Hearing and Sound Communication in Fishes. New York: Springer-Verlag.

    Google Scholar 

  • Bleckmann H, Gottfried T, Blübaum-Gronau E (1989) Lateral line system of surfacefeeding fish: anatomy, physiology and behavior. In: Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 501–526.

    Google Scholar 

  • Bleckmann H, Mogdans J, Dehnhardt G (2003) Processing of dipole and more complex hydrodynamic stimuli under still-and running-water conditions. In: Collin SP, Marshall NJ (eds), Sensory Processing in Aquatic Environments. New York: Springer-Verlag, pp. 108–121.

    Google Scholar 

  • Bodznick D (1989) Comparisons between electrosensory and mechanosensory lateral line systems. In: Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 653–678.

    Google Scholar 

  • Bodznick D, Boord RL (1986) Electroreception in chondricthyes: central anatomy and Physiology. In: Bullock TH, Heilegenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 225–256.

    Google Scholar 

  • Bodznick D, Montgomery J, Bradley DJ (1992) Suppression of common mode signals within the electrosensory system of the little skate. J Exp Biol 171:127–138.

    Google Scholar 

  • Bodznick D, Hjelmstad G, Bennett MV (1993) Accommodation to maintained stimuli in the ampullae of Lorenzini: how an electoreceptive fish achieves sensitivity in a noisy world. Jpn J Physiol 43:S231–237.

    PubMed  Google Scholar 

  • Braun CB, Grande T (2002) Evolution of the octavolateralis system: a phylogenetic assessment. Bioacoustics 12:118–120.

    Google Scholar 

  • Bullock TH (1981) Comparisons of the electric and acoustic senses and their central processing. In: Tavolga WN, Popper AN, Fay RR (eds), Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 527–571.

    Google Scholar 

  • Bullock TH, Hagiwara S, Kusano K, Negishi K (1961) Evidence for a category of electroreceptors in the lateral line of gymnotid fishes. Science 134:1426–1427.

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RA (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46.

    Article  Google Scholar 

  • Canfield JG, Eaton RC (1990) Swimbladder acoustic pressure transduction initiaties Mauthner-mediated escape. Nature 347:760–762.

    Article  Google Scholar 

  • Canfield JG, Rose GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape responses in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156.

    PubMed  CAS  Google Scholar 

  • Carr CE (1986) Time coding in electric fish and barn owls. Brain Behav Evol 28:122–133.

    PubMed  CAS  Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Maler L (1986) Electroreception in gymnotiform fish: central anatomy and physiology. In: Bullock TH, Heilegenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 225–256.

    Google Scholar 

  • Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311.

    Article  PubMed  CAS  Google Scholar 

  • Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz, H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 409–419.

    Google Scholar 

  • Coombs S, Fay R (1985) Adaptation effects on the detection of amplitude modulation: neurophysiological and behavioral assessment in the goldfish auditory system. Hear Res 19:57–71.

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Popper AN, Fay RR (eds), Comparative Hearing: Fishes and Amphibians. New York: Springer-Verlag, pp. 319–362.

    Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Measuring and modeling lateral line excitation patterns to changing dipole source locations. J Comp Physiol 178:359–371.

    Article  CAS  Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) Orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348.

    PubMed  CAS  Google Scholar 

  • Coombs S, New JG, Nelson M (2002) Information-processing demands in electrosensory and mechanosensory lateral line systems. J. Physiol 96:341–354.

    Google Scholar 

  • Cortopassi, KA, Lewis ER (1998) A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav Evol 51:331–348.

    Article  PubMed  CAS  Google Scholar 

  • Covey E (2000) Neural population coding and auditory temporal pattern analysis. Physiol Behav 69:211–220.

    Article  PubMed  CAS  Google Scholar 

  • Crawford JD (1997a) Hearing and acoustic communication in mormyrid electric fishes Mar Fresh Behav Physiol 29:65–86.

    Google Scholar 

  • Crawford JD (1997b) Feature-detecting auditory neurons in the brain of a soundproducing fish. J Comp Physiol A 180:439–450.

    Article  PubMed  CAS  Google Scholar 

  • Denhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104.

    Article  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc Soc Lond B 218:1–26.

    CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 595–618.

    Google Scholar 

  • de Vries HI (1950) The mechanics of the labyrinth otoliths. Acta Oto-Laryngol 38:262–273.

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105.

    PubMed  CAS  Google Scholar 

  • Edds-Walton PL (1998) Anatomical evidence for binaural processing in the descending octaval nucleus of toadfish (Opsanus tau). Hear Res 123:41–54.

    Article  PubMed  CAS  Google Scholar 

  • Eisthen HL, Nishikawa KC (2002) Evolutionary convergence as a tool in neuroscience. Brain Behav Evol 59 (entire issue).

    Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still-and running water. J Comp Physiol A 188:513–526.

    Article  CAS  Google Scholar 

  • Fay RR (1997) Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar, E (eds), Diversity in Auditory Mechanics. Singapore: World Scientific pp. 69–75.

    Google Scholar 

  • Fay RR, Edds-Walton P (1997a) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997b) Diversity in frequency response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 113:235–246.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Fessard A, Szabo T (1961) Mise en evidence d’un recepteur sensible a l’electricite dans la peau d’un mormyre. CR Acad Sci 243:1859–1860.

    Google Scholar 

  • Fields DM, Yen J (2002) Fluid mechanosensory stimulation of behaviour from a planktonic marine copepod, Euchaeta rimana Bradford. J Plankton Res 24:747–755.

    Article  Google Scholar 

  • Fine ML, Winn HE, Olla BL (1975) Communication in fishes. In: Sebeok T (ed), How Animals Communicate. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Finger TE (1986) Electroreception in catfish: behavior, anatomy and electrophysiology. In: Bullock TH, Heilegenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 287–317.

    Google Scholar 

  • Flock A (1965) Electron microscopic and electrophysiological studies on the lateral-line canal organ. Acta Oto Laryngol (Suppl) 199:1–90.

    Google Scholar 

  • Gabbiani F, Metzner W (1999) Encoding and processing of sensory information in neuronal spike trains. J Exp Biol 202:1267–1279.

    PubMed  Google Scholar 

  • Gray JAB, Denton EJ (1991) Fast pressure pulses and communication between fish. J Mar Biol Assoc UK 71:83–106.

    Article  Google Scholar 

  • Hagedorn M (1986) The ecology, courtship, and mating of gymnotiform electric fish. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 497–525

    Google Scholar 

  • Hanke W, Bruecker C, Bleckmann H (2000) The ageing of low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200.

    PubMed  CAS  Google Scholar 

  • Harden Jones F, Arnold, GP, Greer-Walker M, Scholes P (1979) Selective tidal stream transport and the migration of plaice (Pleuronectes platessa L.) In the southern North Sea. J Cons Int Explor Mer 38:331–337.

    Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that the lateral line organ responds to nearfield displacments of sound sources in water. J Acous Soc Am 34:1831–1841.

    Article  Google Scholar 

  • Hassan El-S (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52:23–36.

    Article  PubMed  CAS  Google Scholar 

  • Heiligenberg W (1986) Jamming avoidance responses: model systems for neuroethology. In: Bullock T, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 613–649.

    Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol of Fishes 12:111–117.

    Article  Google Scholar 

  • Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol 111:171–207.

    Article  Google Scholar 

  • Hopkins CD (1988) Neuroethology of electric communication. Annu Rev Neurosci 11: 497–535.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins CD (1999) Design features for electric communication. J Exp Biol 202:1217–1228.

    PubMed  CAS  Google Scholar 

  • Hudspeth A.J, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed), Handbook of Sensory Physiology, Vol. III/3. Berlin: Springer-Verlag, pp. 147–200.

    Google Scholar 

  • Kalmijn AJ (1984) Theory of electromagnetic orientation: a further analysis. In: Bolis A, Keynes RD, Madrell SHP (eds) Comparative Physiology of Sensory Systems, Cambridge, MA: Cambridge University Press, pp. 525–560.

    Google Scholar 

  • Kalmijn AJ (1988a) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1988b) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–188.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–215.

    Google Scholar 

  • Kalmijn AJ (2000) Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fish. Philos Trans R Soc Lond B 355:1135–1141.

    Article  CAS  Google Scholar 

  • Kanter M, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–60.

    Article  PubMed  Google Scholar 

  • Kawasaki M (2000) Phylogenetic evolution of computational algorithms: nonparametric approach to knowledge. Discovery 8:77–80.

    Google Scholar 

  • Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in ototophysan fishes? Brain Behav Evol 53:288–304.

    Article  PubMed  CAS  Google Scholar 

  • Ma WLD and Fay RR (2002) Neural representations of the axis of acoustic particle motion in nucleus centralis of the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol A 188:301–313.

    Article  Google Scholar 

  • Maler L, Mugnaini E (1994) Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J Comp Neurol 345:224–252.

    Article  PubMed  CAS  Google Scholar 

  • Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN (2001). Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109:3048–3054.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA (1999) Anatomy of the central auditory pathway of fish and amphibians. In: Fay RR, Popper AN (eds), Comparative Hearing: Fishes and Amphibians. New York: Springer-Verlag, pp. 155–217.

    Google Scholar 

  • McCormick CA, Braford MR Jr (1988) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 341–364.

    Google Scholar 

  • McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J. Acoust Soc Am 104:3520–3533.

    Article  PubMed  CAS  Google Scholar 

  • McKibben JR, Hopkins CD, Yager DD (1993) Directional sensitivity of tuberous electroreceptors: polarity preferences and frequency tuning. J Comp Physiol A 173:415–424.

    Article  PubMed  CAS  Google Scholar 

  • Meek J, Grant K, Bell C (1999) Structural organization of the mormyrid electrosensory lateral line lobe. J Exp Biol 202:1291–1300.

    PubMed  Google Scholar 

  • Montgomery JC (1984) Noise cancellation in the electrosensory system of the thornback ray: common mode rejection of input produced by the animal’s own ventilatory movement. J Comp Physiol 155A:102–111.

    Google Scholar 

  • Montgomery J, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish, Trematomus bernacchii. Brain Behav Evol 40:209–216.

    PubMed  CAS  Google Scholar 

  • Montgomery JC, Coombs S (1998) Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. J Exp Biol 201:91–102.

    Google Scholar 

  • Montgomery JC, Hamilton AR (1997) Sensory contributions to nocturnal prey capture in the dwarf scorpion fish (Scorpaena papillosus). Mar Fresh Behav Physiol 30:209–223.

    Google Scholar 

  • Montgomery JC, Milton RC (1993) Use of the lateral line for feeding in torrentfish (Cheimarrichthys fosteri). New Zeal J Zool 20:121–125.

    Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurol 1:207–231.

    Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963.

    Article  CAS  Google Scholar 

  • Montgomery JC, McDonald F, Baker CF, Carton AG (2002) Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain Behav Evol 4:190–198.

    Article  Google Scholar 

  • Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N (2003) Sensory integration in the hydrodynamic world of rainbow trout. Proc R Soc Lond B Biol Sci 270(suppl 2):195–197.

    Google Scholar 

  • Moulton JM (1960) Swimming sounds and the schooling of fish. Biol Bull Mar. Biol Lab Woods Hole 119:210–223.

    Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorpholgie 93:73–86.

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish, Sarotherodon niloticus L. J Comp Physiol A 157:555–568.

    Article  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 285–298.

    Google Scholar 

  • Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds), Hearing and Sound Communiation in Fishes. New York: Springer-Verlag, pp. 395–426.

    Google Scholar 

  • Myrberg AA Jr, Ha SJ, Walewski S, Banbury JC (1972) Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull Mar Sci 22:926–949.

    Google Scholar 

  • Nelson ME, MacIver MA (1999) Prey capture in the weakly electric fish Apternonotus albifrons: sensory acquisition strategies and electrosensory consequences. J Exp Biol 202:1195–1203.

    PubMed  CAS  Google Scholar 

  • New JG (1997) The evolution of vertebrate electrosensory systems. Brain Behav Evol 50:244–252.

    PubMed  CAS  Google Scholar 

  • New JG, Bodznick D (1990) Medullary electrosensory processing in the little skate. II. Suppression of electrosensory reafference via a common-mode rejection mechanism. J Comp Physiol A 167:295–307.

    Article  PubMed  CAS  Google Scholar 

  • New JG, Singh S (1994) Central topography of anterior lateral line nerve projections in the channel catfish, Ictalurus punctatus. Brain Behav Evol 43:34–50.

    PubMed  CAS  Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel P (1996) The cytoarchitecture and internal organization of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 364:1–13.

    Article  Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 17–78.

    Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol A 135:315–325.

    Article  Google Scholar 

  • Paulin MG (1995) Electroreception and the compass sense of sharks. J Theor Biol 174: 325–339.

    Article  Google Scholar 

  • Pavolov DS, Tjurjukov SN (1995) Reactions of dace to linear accelerations J Fish Biol 46:768–774.

    Article  Google Scholar 

  • Peters RC, van Wijland F (1974) Electro-orientation and the passive electric catfish, Ictalurus nebulosus. J Comp Physiol 92:273–280.

    Article  Google Scholar 

  • Platt C, Popper AN, Fay RR (1989) The ear as part of the octavolateralis system. In: Coombs S, Görner P. Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 633–651.

    Google Scholar 

  • Pohlmann K, Grasso FW, Briethaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Coombs S (1982) The morphology and evolution of the ear in Actinopterygian fishes. Am Zool 22:311–328.

    Google Scholar 

  • Popper AN, Fay RR (1999) The auditory periphery in fishes. In: Fay RR, Popper AN (eds), Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 43–100.

    Google Scholar 

  • Popper AN, Platt C, Edds PL (1992) Evolution of the vertebrate inner ear: an overview of ideas. In: Webster DB, Fay RR, Popper AN (eds), The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 49–61.

    Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 445–460.

    Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 131–150.

    Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds), Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 459–480.

    Google Scholar 

  • Satou M, Shiraishi A, Matsushima T, Okumoto N (1991) Vibrational communication during spawning behavior in the Hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 168:417–428.

    Article  Google Scholar 

  • Saunders AJ, Montgomery JC (1985) Field and laboratory studies of the feeding behaviour of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proc R Soc Lond B 224:209–221.

    Article  PubMed  CAS  Google Scholar 

  • Schellart AM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In Coombs S, Görner P, Münz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 421–443.

    Google Scholar 

  • Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol 98:307–332.

    Article  Google Scholar 

  • Shumway C (1989a) Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences. J Neurosci 9:4388–4399.

    PubMed  CAS  Google Scholar 

  • Shumway C (1989b) Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences. J Neurosci 9:4400–4415.

    PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) The Merging of the Senses. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Board Can 32:2441–2446.

    Google Scholar 

  • Tavolga WN (1975) Acoustic obstacle detection in the sea catfish, Galeichthys felis In: Schuiff A, Hawkins AD (eds), Sound Reception in Fish. Amsterdam: Elsevier, pp. 185–204.

    Google Scholar 

  • Tolimieri N, Jeffs A, Montgomery J (2000) Ambient sound as a cue for navigation by the pelagic larvae of reef fish. Mar Ecol Prog 207:219–224.

    Google Scholar 

  • Tricas TC (1982) Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum. Copeia 1982:948–952.

    Article  Google Scholar 

  • Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol A 169:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Tricas TC, Michael SM, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202:129–132.

    Article  PubMed  CAS  Google Scholar 

  • Turner RW, Maler L (1999) Oscillatory and burst discharge in the apteronotid electrosensory lateral line lobe. J Exp Biol 202:1255–1265.

    PubMed  Google Scholar 

  • van Bergeijk WA (1964) Directional and non-directional hearing in fish. In: Tavolga WN: Marine Bioacoustics Oxford: Pergamon Press, pp. 185–204.

    Google Scholar 

  • Vogel S (1994) Life in Moving Fluids: The Physical Biology of Flow. Princeton: Princeton University Press.

    Google Scholar 

  • Voigt R, Carton AG, Montgomery JC (2000) Responses of lateral line afferent neurons to water flow. J Exp Biol 203:2495–2502.

    PubMed  CAS  Google Scholar 

  • von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202:1205–1215.

    PubMed  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L (1998) Electric fish measure distance in the dark. Nature 395:890–894.

    Article  PubMed  CAS  Google Scholar 

  • Webb JF, Smith WL (2000) The laterophysic connection in chaetodontid butterflyfish: morphological variation and speculations on sensory function. Philos Trans R Soc Lond B 355:1125–1129.

    Article  CAS  Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objectes by the blind cave fish (Anoptichthys jordani: Characidae). J Comp Physiol 143:375–381.

    Article  Google Scholar 

  • Westby GWN (1988) The ecology, discharge diversity and predatory behavior of gymnotiform electric fish in the coastal streams of French Guina. Behav Ecol Sociobiol 22:341–354.

    Google Scholar 

  • Wever EG (1976) Origin and evolution of the ear of vertebrates. In: Masterton RB, Bitterman ME, Campbell, CBG, Hotton N (eds), Handbook of Sensory Physiology, Vol V/I: Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Wilkens LA, Wettring B, Wagner E, Wojtenek W, Russel D (2001) Prey detection in selective plankton feeding by the paddlefish: is the electric sense sufficient? J Exp Biol. 204:1381–1389.

    PubMed  CAS  Google Scholar 

  • Wojtenek W, Hofmann MH, Wilkens LA (2001) Primary afferent electrosensory neurons represent paddlefish natural prey. Neurocomputing 38–40:451–458.

    Article  Google Scholar 

  • Yager DD, Hopkins CD (1993) Directional characteristics of tuberous electroreceptors in the weakly electric fish, Hypopomus (Gymnotiformes). J Comp Physiol A 143:401–414.

    Google Scholar 

  • Zakon H (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 103–156.

    Google Scholar 

  • Zakon H., Lu Y, Weisleder P (1998) Sensory cells determine afferent terminal morphology in cross-innervated electroreceptor organs: implications for hair cells. J Neurosci 18:2581–2591.

    PubMed  CAS  Google Scholar 

  • Zorn T, Coers S, New JG (1998) Parallel commissural electrosensory pathways in the medulla of the channel catfish, Ictalurus punctatus. In: Proceedings of the Fifth International Congress on Neuroethology, p. 34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Coombs, S., Montgomery, J.C. (2005). Comparing Octavolateralis Sensory Systems: What Can We Learn?. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_12

Download citation

Publish with us

Policies and ethics