Skip to main content

The Physiology of Low-Frequency Electrosensory Systems

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47:1043–1056.

    PubMed  CAS  Google Scholar 

  • Bell CC, Caputi A, Grant K, Serrier J (1993) Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proc Natl Acad Sci USA 90:4650–4654.

    Article  PubMed  CAS  Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997a) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50:17–31.

    PubMed  Google Scholar 

  • Bell CC, Han VZ, Sugawara Y, Grant K (1997b) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Han VZ, Sugawara Y, Grant K (1999) Synaptic plasticity in the mormyrid electrosensory lobe. J Exp Biol 202 (Pt 10):1339–1347.

    PubMed  CAS  Google Scholar 

  • Bennett MVL, Obara S (1986) Ionic mechanisms and pharmacology of electroreceptors. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 157–181.

    Google Scholar 

  • Bezrukov SM, Vodyanoy I (1997) Stochastic resonance in non-dynamical systems without response thresholds. Nature 385:319–321.

    Article  PubMed  CAS  Google Scholar 

  • Bodznick D (1991) Elasmobranch vision: multimodal integration in the brain. J Exp Zool Suppl 5:108–116.

    Google Scholar 

  • Bodznick D, Boord RL (1986) Electroreception. New York: Springer-Verlag.

    Google Scholar 

  • Bodznick D, Montgomery JC (1992) Suppression of ventilatory reafference in the elasmobranch electrosensory system: medullary neuron receptive fields support a common mode rejection mechanism. J Exp Biol 171:127–137.

    Google Scholar 

  • Bodznick D, Schmidt AW (1984) Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea. J Comp Neurol 225:581–590.

    Article  PubMed  CAS  Google Scholar 

  • Bodznick D, Montgomery JC, Bradley DJ (1992) Suppression of common mode signals within the electrosensory system of the little skate Raja erinacea. J Exp Biol 17:107–125.

    Google Scholar 

  • Bodznick D, Hjelmstad G, Bennett MVL (1993) Accommodation to maintained stimuli in the ampullae of Lorenzini: how an electroreceptive fish achieves sensitivity in a noisy world. Jpn J Physiol 43:S231–237.

    PubMed  Google Scholar 

  • Bodznick D, Montgomery JC, Carey M (1999) Adaptive mechanisms in the elasmobranch hindbrain. J Exp Biol 202:1357–1364.

    PubMed  Google Scholar 

  • Bullock TH (1982) Electroreception. In: Cowan MW (ed), Annual Review of Neuroscience, Vol. 5. Palo Alto, CA: Annual Reviews, pp. 121–170.

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res 287:25–46.

    PubMed  CAS  Google Scholar 

  • Clusin WT, Bennett MVL (1979) The ionic basis of oscillatory responses of skate electroreceptors. J Gen Physiol 73:703–723.

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1988) Receptors in the bill of the platypus. J Physiol 400:349–366.

    PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1989) Responses of electroreceptors in the platypus bill to steady and alternating potentials. J Physiol 408:391–404.

    PubMed  CAS  Google Scholar 

  • Hofmann MH, Wojtenek W, Wilkens LA (2002) Central organization of the electrosensory system in the paddlefish (Polyodon spathula). J Comp Neurol 446:25–36.

    Article  PubMed  Google Scholar 

  • Iggo A, Gregory JE, Proske U (1992) The central projection of electrosensory information in the platypus. J Physiol 447:449–465.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed), Handbook of Sensory Physiology, Vol. III/3. Berlin: Springer-Verlag, pp. 148–200.

    Google Scholar 

  • Kalmijn AJ (1988) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.

    Google Scholar 

  • Kalmijn AJ (2003) Graded positive feedback in elasmobranch ampullae of Lorenzini. AIP Conf Proc 665:133–141.

    Google Scholar 

  • Krubitzer L, Manger P, Pettigrew J, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306.

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Fishman HM (1994) Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates. Biophys J 67:1525–1533.

    PubMed  CAS  Google Scholar 

  • Lu J, Fishman HM (1995) Ion channels and transporters in the electroreceptive ampullary epithelium from skates. Biophys J 69:2467–2475.

    Article  PubMed  CAS  Google Scholar 

  • Meek J, Grant K, Sugawara Y, Hafmans TG, Veron M, Denizot JP (1996) Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology. J Comp Neurol 375:43–65.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Coombs S, Conley R, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurosci 1:207–231.

    Google Scholar 

  • Montgomery JC (1984) Noise cancellation in the electrosensory system of the thornback ray: common mode rejection of input produced by the animal’s own ventilatory movement. J Comp Physiol A 155:103–111.

    Article  Google Scholar 

  • Montgomery JC, Bodznick D (1993) Hindbrain circuitry mediating common mode suppression of ventilatory reafference in the electrosensory system of the little skate Raja erinacea. J Exp Biol 183:203–215.

    Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148.

    Article  PubMed  CAS  Google Scholar 

  • Murray RW (1965) Electroreceptor mechanisms: the relation of impulse frequency to stimulus strength and responses to pulsed stimuli in the ampullae of Lorenzini of elasmobranchs. J Physiol 180:592–606.

    PubMed  CAS  Google Scholar 

  • Neiman AB, Russell DF (2004) Two distinct types of noisy oscillators in electroreceptors of paddlefish. J Neurophysiol 92:492–509.

    Article  PubMed  Google Scholar 

  • Nelson ME, Paulin MG (1995) Neural simulations of adaptive reafference suppression in the elasmobranch electrosensory system. J Comp Physiol A 177:723–736.

    Article  PubMed  CAS  Google Scholar 

  • Obara S, Bennett MVL (1972) Mode of operation of ampullae of Lorenzini of the skate, Raja. J Gen Physiol 60:534–557.

    Article  PubMed  CAS  Google Scholar 

  • Obara S, Sugawara Y (1984) Electroreceptor mechanisms in teleost and non-teleost fishes. In: Bolis L, Keynes RD, Maddrell SHP (eds), Comparative Physiology of Sensory Systems. New York: Cambridge University Press, pp. 509–523.

    Google Scholar 

  • Paulin MG (1995) Electroreception and the compass sense of sharks. J Theor Biol 174:325–339.

    Article  Google Scholar 

  • Peters RC, Bretschneider F (1972) Electric phenomena in the habitat of the catfish Ictalurus nebulosus LeS. J Comp Neurol 81:345–362.

    Google Scholar 

  • Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202 (Pt 10):1447–1454.

    PubMed  CAS  Google Scholar 

  • Roberts PD, Bell CC (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. J Comput Neurosci 9:67–83.

    Article  PubMed  CAS  Google Scholar 

  • Russell DF, Wilkens LA, Moss F (1999) Use of behavioural stochastic resonance by paddle fish for feeding. Nature 402:291–294.

    Article  PubMed  CAS  Google Scholar 

  • Schluger JH, Hopkins CD (1987) Electric fish approach stationary signal sources by following electric current lines. J Exp Biol 130:359–367.

    PubMed  CAS  Google Scholar 

  • Schweitzer J (1986) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata). A single-unit study. J Comp Physiol A 158:43–58.

    Article  PubMed  CAS  Google Scholar 

  • Sisneros JA, Tricas TC (2000) Androgen-induced changes in the response dynamics of ampullary electrosensory primary afferent neurons. J Neurosci 20:8586–8595.

    PubMed  CAS  Google Scholar 

  • Sisneros JA, Tricas TC (2002) Neuroethology and life history adaptations of the elasmobranch electric sense. J Physiol Paris 96:379–389.

    Article  PubMed  CAS  Google Scholar 

  • Struik ML, Bretschneider F, Peters RC (2002) Spontaneous nerve activity and sensitivity in catfish ampullary electroreceptor organs after tetanus toxin application. Pflugers Arch 443:903–907.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara Y (1989a) Electrogenic Na-K pump at the basal face of the sensory epithelium in the Plotosus electroreceptor. J Comp Physiol A 164:589–596.

    Article  Google Scholar 

  • Sugawara Y (1989b) Two Ca current components of the receptor current in the electroreceptors of the marine catfish Plotosus. J Gen Physiol 93:365–380.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara Y, Obara S (1989) Receptor Ca current and Ca-gated K current in tonic electroreceptors of the marine catfish Plotosus. J Gen Physiol 93:343–364.

    Article  PubMed  CAS  Google Scholar 

  • Zakon HH (1986) The electroreceptive periphery. In: Bullock DTH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 103–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bodznick, D., Montgomery, J.C. (2005). The Physiology of Low-Frequency Electrosensory Systems. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_6

Download citation

Publish with us

Policies and ethics