Skip to main content
Book cover

Pitch pp 169–233Cite as

Pitch Perception Models

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 24))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1997) Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Audit Neurosci 3:335–350.

    Google Scholar 

  • AFNOR (1977) Recueil des normes françaises de l’acoustique. Tome 1 (vocalulaire), NFS30-107. Paris: Association Française de Normalisation.

    Google Scholar 

  • Akeroyd MA, Summerfield AQ (2000) A fully-temporal account of the perception of dichotic pitches. Br J Audiol 33:106–107.

    Google Scholar 

  • Anantharaman JN, Krishnamurti AK, and Feth LL (1993) Intensity weighting of average instantaneous frequency as a model of frequency discrimination. J Acoust Soc Am 94:723–729.

    Article  CAS  PubMed  Google Scholar 

  • ANSI (1973) American national psychoacoustical terminology-S3.20. New York: American National Standards Institute.

    Google Scholar 

  • Assmann PF, Summerfield Q (1990) Modeling the perception of concurrent vowels: vowels with different fundamental frequencies. J Acoust Soc Am 88:680–697.

    Article  CAS  PubMed  Google Scholar 

  • Bachem A (1937) Various kinds of absolute pitch. J Acoust Soc Am 9:145–151.

    Article  Google Scholar 

  • Barlow HB (1961) Possible principles underlying the transformations of sensory messages. In: Rosenblith WA (ed), Sensory Communication. Cambridge, MA: MIT Press, pp. 217–234.

    Google Scholar 

  • Barlow HB (2001) Redundancy reduction revisited. Network Comput. Neural Syst 12:241–253.

    Article  CAS  Google Scholar 

  • Bernstein JG, Oxenham A (2003) Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number? J Acoust Soc Am 113:3323–3334.

    PubMed  Google Scholar 

  • Bilsen FA (1977) Pitch of noise signals: evidence for a “central spectrum”. J Acoust Soc Am 61:150–161.

    Article  CAS  PubMed  Google Scholar 

  • Bilsen FA, Goldstein JL (1974) Pitch of dichotically delayed noise and its possible spectral basis. J Acoust Soc Am 55:292–296.

    Article  CAS  PubMed  Google Scholar 

  • Bonnier P (1896–98) L’oreille — Physiologie — Les fonctions. Paris: Masson et fils Gauthier-Villars et fils.

    Google Scholar 

  • Bonnier P (1901) L’audition. Paris: Octave Doin.

    Google Scholar 

  • Boring EG (1926) Auditory theory with special reference to intensity, volume and localization. Am J Psychol 37:157–188.

    Google Scholar 

  • Boring EG (1929) The psychology of controversy. Psychol Rev 36:97–121 (reproduced in Boring 1963).

    Google Scholar 

  • Boring EG (1942) Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Boring EG (1963) History, Psychology and Science (Edited by R.I. Watson and D.T. Campbell). New York: John Wiley & Sons.

    Google Scholar 

  • Bower CM (1989) Fundamentals of Music (translation of De Institutione Musica, Anicius Manlius Severinus Boethius, d524). New Haven: Yale University Press.

    Google Scholar 

  • Brown JC, Puckette MS (1989) Calculation of a “narrowed” autocorrelation function. J Acoust Soc Am 85:1595–1601.

    CAS  PubMed  Google Scholar 

  • Burns E (1982) A quantal effect of pitch shift? J Acoust Soc Am 72:S43.

    Article  Google Scholar 

  • Camalet S, Duke T, Jülicher F, Prost J (2000) Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97:3183–3188.

    Article  CAS  PubMed  Google Scholar 

  • Cariani PA (2001) Neural timing nets. Neural Networks 14:737–753.

    Article  CAS  PubMed  Google Scholar 

  • Cariani PA (2003) Recurrent timing nets for auditory scene analysis. Proc IEEE IJCNN, pp. 1575–1580.

    Google Scholar 

  • Cariani PA, Delgutte B (1996a) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophysiol 76:1698–1716.

    CAS  PubMed  Google Scholar 

  • Cariani PA, Delgutte B (1996b) Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, rate-pitch and the dominance region for pitch. J Neurophysiol 76:1717–1734.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1996) Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlapping masker. J Acoust Soc Am 99:517–524.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1998a) The effects of resolvability on the encoding of fundamental frequency by the auditory system. In: Palmer A, Rees A, Summerfield AQ, Meddis R (eds), Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 246–254.

    Google Scholar 

  • Carlyon RP (1998b) Comments on “A unitary model of pitch perception” [J Acoust Soc Am 102, 1811–1820 (1997)]. J Acoust Soc Am 104:1118–1121.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, Shackleton TM (1994) Comparing the fundamental frequencies of resolved and unresolved harmonics: evidence for two pitch mechanisms? J Acoust Soc Am 95:3541–3554.

    Google Scholar 

  • Carlyon RP, Shamma S (2003) An account of monaural phase sensitivity. J Acoust Soc Am 114:333–348.

    Article  PubMed  Google Scholar 

  • Carlyon RP, Moore BCJ, Micheyl C (2000) The effect of modulation rate on the detection of frequency modulation and mistuning of complex tones. J Acoust Soc Am 108:304–315.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, Demany L, Deeks J (2001) Temporal pitch perception and the binaural system. J Acoust Soc Am 109:686–700.

    Article  CAS  PubMed  Google Scholar 

  • Carney LH, Heinz MG, Evilsizer ME, Gilkey RH, Colburn HS (2002) Auditory phase opponency: a temporal model for masked detection at low frequencies. Acta Acustica 88:334–347.

    Google Scholar 

  • Cedolin L, Delgutte B (2005) Representations of the pitch of complex tones in the auditory nerve. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Psychophysics, Physiology and Modeling. New York: Springer, pp. 107–116.

    Google Scholar 

  • Cohen HF (1984) Quantifying Music. Dordrecht: D. Reidel (Kluwer).

    Google Scholar 

  • Cohen MA, Grossberg S, Wyse LL (1995) A spectral network model of pitch perception. J Acoust Soc Am 98:862–879.

    CAS  PubMed  Google Scholar 

  • Cramer EM, Huggins WH (1958) Creation of pitch through binaural interaction. J Acoust Soc Am 30:413–417.

    Article  Google Scholar 

  • Culling JF (2000) Dichotic pitches as illusions of binaural unmasking. III. The existence region of the Fourcin pitch. J Acoust Soc Am 107:2201–2208.

    CAS  PubMed  Google Scholar 

  • Culling JF, Marshall D, Summerfield Q (1998a) Dichotic pitches as illusions of binaural unmasking II: the Fourcin pitch and the Dichotic Repetition Pitch. J Acoust Soc Am 103:3525–3539.

    Google Scholar 

  • Culling JF, Summerfield Q, Marshall DH (1998b) Dichotic pitches as illusions of binaural unmasking I: Huggin’s pitch and the “Binaural Edge Pitch.” J Acoust Soc Am 103:3509–3526.

    CAS  PubMed  Google Scholar 

  • Dai H, Nguyen Q, Kidd GJ, Feth LL, Green DM (1996) Phase independence of pitch produced by narrow-band signals. J Acoust Soc Am 100:2349–2351.

    CAS  PubMed  Google Scholar 

  • Dau T, Püschel D, Kohlrausch A (1996) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99:3615–3622.

    CAS  PubMed  Google Scholar 

  • Davis H, Silverman SR, McAuliffe DR (1951) Some observations on pitch and frequency. J Acoust Soc Am 23:40–42.

    Article  Google Scholar 

  • de Boer E (1956) On the “residue” in hearing. PhD Thesis.

    Google Scholar 

  • de Boer E (1976) On the “residue” and auditory pitch perception. In: Keidel WD, Neff WD (eds), Handbook of Sensory Physiology, Vol V-3. Berlin: Springer, pp. 479–583.

    Google Scholar 

  • de Boer E (1977) Pitch theories unified. In: Evans EF, and Wilson JP (eds), Psychophysics and Physiology of Hearing. London: Academic Press, pp. 323–334.

    Google Scholar 

  • de Cheveigné A (1989) Pitch and the narrowed autocoincidence histogram. Proc ICMPC, Kyoto, 67–70.

    Google Scholar 

  • de Cheveigné A (1993) Separation of concurrent harmonic sounds: fundamental frequency estimation and a time-domain cancellation model of auditory processing. J Acoust Soc Am 93:3271–3290.

    Google Scholar 

  • de Cheveigné A (1997a) Concurrent vowel identification III: A neural model of harmonic interference cancellation. J Acoust Soc Am 101:2857–2865.

    Google Scholar 

  • de Cheveigné A (1997b) Harmonic fusion and pitch shifts of inharmonic partials. J Acoust Soc Am 102:1083–1087.

    Google Scholar 

  • de Cheveigné A (1998) Cancellation model of pitch perception. J Acoust Soc Am 103:1261–1271.

    PubMed  Google Scholar 

  • de Cheveigné A (1999) Pitch shifts of mistuned partials: a time-domain model. J Acoust Soc Am 106:887–897.

    PubMed  Google Scholar 

  • de Cheveigné A (2000) A model of the perceptual asymmetry between peaks and troughs of frequency modulation. J Acoust Soc Am 107:2645–2656.

    PubMed  Google Scholar 

  • de Cheveigné A (2001) Correlation Network model of auditory processing. In: Proceedings of the Workshop on Consistent & Reliable Acoustic Cues for Sound Analysis, Aalborg (Denmark).

    Google Scholar 

  • de Cheveigné A, Kawahara H (1999) Multiple period estimation and pitch perception model. Speech Commun 27:175–185.

    Google Scholar 

  • de Cheveigné A, Kawahara H (2002) YIN, a fundamental frequency estimator for speech and music. J Acoust Soc Am 111:1917–1930.

    PubMed  Google Scholar 

  • Delgutte B (1984) Speech coding in the auditory nerve: II. Processing schemes for vowel-like sounds. J Acoust Soc Am 75:879–886.

    CAS  PubMed  Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp. 157–220.

    Google Scholar 

  • Demany L, Armand F (1984) The perceptual reality of tone chroma in early infancy. J Acoust Soc Am 76:57–66.

    Article  CAS  PubMed  Google Scholar 

  • Demany L, Clément S (1997) The perception of frequency peaks and troughs in wide frequency modulations. IV. Effects of modulation waveform. J Acoust Soc Am 102:2935–2944.

    Article  CAS  PubMed  Google Scholar 

  • Demany L, Ramos C (2004) Informational masking and pitch memory: perceiving a change in a non-perceived tone. Proc CFA/DAGA.

    Google Scholar 

  • Dooley GJ, Moore BCJ (1988) Detection of linear frequency glides as a function of frequency and duration. J Acoust Soc Am 84:2045–2057.

    Google Scholar 

  • Duchez M-E (1989) La notion musicale d’élément «porteur de forme». Approche épistémologique et historique. In McAdams S, Deliège I (eds), La Musique et les Sciences Cognitives. Liège: Pierre Mardaga, pp. 285–303.

    Google Scholar 

  • Duifhuis H, Willems LF, Sluyter RJ (1982) Measurement of pitch in speech: an implementation of Goldstein’s theory of pitch perception. J Acoust Soc Am 71:1568–1580.

    Article  CAS  PubMed  Google Scholar 

  • Durlach NI (1963) Equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am 35:1206–1218.

    Article  Google Scholar 

  • Du Verney JG (1683) Traité de l’organe de l’ouie, contenant la structure, les usages et les maladies de toutes les parties de l’oreille. Paris.

    Google Scholar 

  • Elhilali M, Klein DJ, Fritz JB, Simon JZ, Shamma SA (2005) The enigma of cortical responses: slow yet precise. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Psychophysics, physiology and modeling. New York: Springer, pp. 485–494.

    Google Scholar 

  • Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17:369–420.

    CAS  PubMed  Google Scholar 

  • Evans EF (1986) Cochlear nerve fibre temporal discharge patterns, cochlear frequency selectivity and the dominant region for pitch. In: Moore BCJ, Patterson RD (eds), Auditory Frequency Selectivity. New York: Plenum Press, pp. 253–264.

    Google Scholar 

  • Fletcher H (1924) The physical criterion for determining the pitch of a musical tone. Phys Rev (reprinted in Shubert, 1979, 135–145) 23:427–437.

    Article  Google Scholar 

  • Fourier JBJ (1822) Traité analytique de la chaleur. Paris: Didot.

    Google Scholar 

  • Gábor D (1947) Acoustical quanta and the theory of hearing. Nature 159:591–594.

    Google Scholar 

  • Galambos R, Davis H (1943) The response of single auditory-nerve fibers to acoustic stimulation. J Neurophysiol 6:39–57.

    Google Scholar 

  • Galilei G (1638) Mathematical discourses concerning two new sciences relating to mechanicks and local motion, in four dialogues. Translated by Weston, London: Hooke (reprinted in Lindsay, 1973, pp. 40–61).

    Google Scholar 

  • Gerson A, Goldstein JL (1978) Evidence for a general template in central optimal processing for pitch of complex tones. J Acoust Soc Am 63:498–510.

    Article  CAS  PubMed  Google Scholar 

  • Gockel H, Moore BCJ, Carlyon RP (2001) Influence of rate of change of frequency on the overall pitch of frequency-modulated tones. J Acoust Soc Am 109:701–712.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL (1970) Aural combination tones. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, pp. 230–247.

    Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    CAS  PubMed  Google Scholar 

  • Goldstein JL, Srulovicz P (1977) Auditory-nerve spike intervals as an adequate basis for aural frequency measurement. In: Evans EF, Wilson JP (eds), Psychophysics and Physiology of hearing. London: Academic Press, pp. 337–347.

    Google Scholar 

  • Gray AA (1900) On a modification of the Helmholtz theory of hearing. J Anat Physiol 34:324–350.

    Google Scholar 

  • Grimault N, Micheyl C, Carlyon RP, Arthaud P, Collet L (2000) Influence of peripheral resolvability on the perceptual segregation of harmonic complex tones differing in fundamental frequency. J Acoust Soc Am 108:263–271.

    Article  CAS  PubMed  Google Scholar 

  • Grose JH, Hall JW, III, Buss E (2002) Virtual pitch integration for asynchronous harmonics. J Acoust Soc Am 112:2956–2961.

    Article  PubMed  Google Scholar 

  • Hartmann WM (1993) On the origin of the enlarged melodic octave. J Acoust Soc Am 93:3400–3409.

    CAS  PubMed  Google Scholar 

  • Hartmann WM (1996) Pitch, periodicity, and auditory organization. J Acoust Soc Am 100:3491–3502.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann WM (1997) Signals, sound and sensation. Woodbury, NY: AIP.

    Google Scholar 

  • Hartmann WM, Doty SL (1996) On the pitches of the components of a complex tone. J Acoust Soc Am 99:567–578.

    CAS  PubMed  Google Scholar 

  • Hartmann WM, Klein MA (1980) Theory of frequency modulation detection for low modulation frequencies. J Acoust Soc Am 67:935–946.

    Article  CAS  PubMed  Google Scholar 

  • Haykin S (1999) Neural Networks, A Comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hebb DO (1949) The Organization of Behavior. New York: John Wiley & Sons.

    Google Scholar 

  • Hebb DO (1959) A neuropsychological theory. In: Koch S (ed), Psychology, A Study of a Science, Vol. I. New York: McGraw-Hill, pp. 622–643.

    Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273–2316. © 2001 by the Massachusetts Institute of Technology.

    CAS  PubMed  Google Scholar 

  • Hess W (1983) Pitch determination of speech signals. Berlin: Springer.

    Google Scholar 

  • Hermes DJ (1988) Measurement of pitch by subharmonic summation. J Acoust Soc Am 83:257–264.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt MJ, Meddis R (1994) A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. J Acoust Soc Am 95:2145–2159.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt MJ, Meddis R, Shackleton TM (1992) A computer model of a cochlear nucleus stellate cell. Responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91:2096–2109.

    Article  CAS  PubMed  Google Scholar 

  • Hirsh I (1948) The influence of interaural phase on interaural summation and inhibition. J Acoust Soc Am 20:536–544.

    Google Scholar 

  • Hounshell DA (1976) Bell and Gray: contrasts in style, politics and etiquette. Proc IEEE 64:1305–1314.

    Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of complex tones. Evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Article  Google Scholar 

  • Houtsma AJM, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310.

    Article  Google Scholar 

  • Huggins WH, Licklider JCR (1951) Place mechanisms of auditory frequency analysis. J Acoust Soc Am 23:290–299.

    Article  Google Scholar 

  • Hunt FV (1992, original: 1978) Origins in acoustics. Woodbury, NY: Acoustical Society of America.

    Google Scholar 

  • Hurst CH (1895) A new theory of hearing. Proc Trans Liverpool Biol Soc 9:321–353 (and plate XX).

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Google Scholar 

  • Jenkins RA (1961) Perception of pitch, timbre and loudness. J Acoust Soc Am 33:1550–1557.

    Article  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    CAS  PubMed  Google Scholar 

  • Joris PX (2001) Sensitivity of inferior colliculus neurons to interaural time differences of broadband signals: comparison with auditory nerve firing. In: Breebaart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R (eds), Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker BV, pp. 177–183.

    Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21:1235–1238.

    Article  CAS  PubMed  Google Scholar 

  • Kaernbach C, Demany L (1998) Psychophysical evidence against the autocorrelation theory of pitch perception. J Acoust Soc Am 104:2298–2306.

    Article  CAS  PubMed  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurosci 17:3312–3321.

    PubMed  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454.

    Article  CAS  PubMed  Google Scholar 

  • Langner G (1998) Neuronal periodicity coding and pitch effects. In: Poon PWF, Brugge JF (eds), Central Auditory Processing and Neural Modeling. New York: Plenum.

    Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol 60:1799–1822.

    CAS  PubMed  Google Scholar 

  • Le Cat C-N (1758) La Théorie de L’ouie: Supplément à cet Article du Traité des Sens. Paris: Vallat-la-Chapelle.

    Google Scholar 

  • Licklider JCR (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20:150–159.

    Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception (reproduced in Schubert 1979, 155–160). Experientia 7:128–134.

    Article  CAS  PubMed  Google Scholar 

  • Licklider JCR (1959) Three auditory theories. In: Koch S (ed), Psychology, A study of a Science, Vol. I. New York: McGraw-Hill, pp. 41–144.

    Google Scholar 

  • Lindsay RB (1966) The story of acoustics. J Acoust Soc Am 39:629–644.

    CAS  PubMed  Google Scholar 

  • Lindsay RB (1973) Acoustics: historical and philosophical development. Stroudsburg: Dowden, Hutchinson and Ross.

    Google Scholar 

  • Loeb GE, White MW, and Merzenich MM (1983) Spatial cross-correlation—a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    Article  CAS  PubMed  Google Scholar 

  • Lyon R (1984) Computational models of neural auditory processing. Proc IEEE ICASSP, 36.1(1–4).

    Google Scholar 

  • Maass W (1998) On the role of time and space in neural computation. Lecture notes in computer science 1450:72–83.

    Google Scholar 

  • Maass W, Natschläger T, Markram H (2003) Computation models for generic cortical microcircuits. In: Feng J (ed), Computational Neuroscience: A Comprehensive Approach. Boca Raton, FL: CRC Press, pp. 575–605.

    Google Scholar 

  • Macran HS (1902) The harmonics of Aristoxenus. Oxford: The Clarendon Press (reprinted 1990, Georg Olms Verlag, Hildesheim).

    Google Scholar 

  • Marozeau J, de Cheveigné A, McAdams S, and Winsberg S (2003) The dependency of timbre on fundamental frequency. J Acoust Soc Am 114:2946–2957.

    Article  PubMed  Google Scholar 

  • Martens JP (1984) Comment on “Algorithm for extraction of pitch and pitch salience from complex tonal signals” [J Acoust Soc Am 71, 679–688 (1982)]. J Acoust Soc Am 75:626–628.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer A (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, Carlyon RP (1999) Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains. J Acoust Soc Am 105:347–357.

    Article  CAS  PubMed  Google Scholar 

  • Meddis R (1988) Simulation of auditory-neural transduction: further studies. J Acoust Soc Am 83:1056–1063.

    Article  CAS  PubMed  Google Scholar 

  • Meddis R, Hewitt MJ (1991a) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, Hewitt MJ (1991b) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: phase sensitivity. J Acoust Soc Am 89:2883–2894.

    Google Scholar 

  • Meddis R, Hewitt MJ (1992) Modeling the identification of concurrent vowels with different fundamental frequencies. J Acoust Soc Am 91:233–245.

    Article  CAS  PubMed  Google Scholar 

  • Meddis R, O’Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102:1811–1820.

    Article  CAS  PubMed  Google Scholar 

  • Mersenne M (1636) Harmonie Universelle. Paris: Cramoisy (reprinted 1975, Paris: Editions du CNRS).

    Google Scholar 

  • Micheyl C, Carlyon RP (1998) Effects of temporal fringes on fundamental-frequency discrimination. J Acoust Soc Am 104:3006–3018.

    CAS  PubMed  Google Scholar 

  • Miyazaki K (1990) The speed of musical pitch identification by absolute-pitch possessors. Music Percept 8:177–188.

    Google Scholar 

  • Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610–619.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1977) An Introduction to the Psychology of Hearing. London: Academic Press (first edition).

    Google Scholar 

  • Moore BCJ (2003) An introduction to the psychology of hearing. London: Academic Press (fifth edition).

    Google Scholar 

  • Moore BCJ, Sek A (1994) Effects of carrier frequency and background noise on the detection of mixed modulation. J Acoust Soc Am 96:741–751.

    CAS  PubMed  Google Scholar 

  • Nelken I, Ulanovsky N, Las L, Bar-Yosef O, Anderson M, Chechik G, Tishby N, Young E (2005) Transformation of stimulus representations in the ascending auditory system. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Psychophysics, Physiology and Modeling. New York: Springer, pp. 265–274.

    Google Scholar 

  • Newman EB, Stevens SS, and Davis H (1937) Factors in the production of aural harmonics and combination tones. J Acoust Soc Am 9:107–118.

    Article  Google Scholar 

  • Noll AM (1967) Cepstrum pitch determination. J Acoust Soc Am 41:293–309.

    Article  CAS  PubMed  Google Scholar 

  • Nordmark J (1963) Some analogies between pitch and lateralization phenomena. J Acoust Soc Am 35:1544–1547.

    Article  Google Scholar 

  • Nordmark JO (1968) Mechanisms of frequency discrimination. J Acoust Soc Am 44:1533–1540.

    Article  CAS  PubMed  Google Scholar 

  • Nordmark JO (1970) Time and frequency analysis. In: Tobias JV (ed), Foundations of Modern Auditory Theory. New York: Academic Press, pp. 55–83.

    Google Scholar 

  • Ohgushi K (1978) On the role of spatial and temporal cues in the perception of the pitch of complex tones. J Acoust Soc Am 64:764–771.

    Article  CAS  PubMed  Google Scholar 

  • Ohm GS (1843) On the definition of a tone with the associated theory of the siren and similar sound producing devices. Poggendorf’s Annalen der Physik und Chemie 59:497ff (translated and reprinted in Lindsay, 1973, pp. 242–247).

    Google Scholar 

  • Okada M, Kashino M (2003) The role of spectral change detectors in temporal order judgment of tones. NeuroReport 14:261–264.

    PubMed  Google Scholar 

  • Oxenham A, Bernstein LR, Micheyl C (2005) Pitch perception of complex tones within and across ears and frequency regions. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Physiology, Psychophysics and Modeling. New York: Springer, pp. 126–135.

    Google Scholar 

  • Parncutt R (1988) Revision of Terhardt’s psychoacoustical model of the roots of a musical chord. Music Percept 6:65–94.

    Google Scholar 

  • Parsons TW (1976) Separation of speech from interfering speech by means of harmonic selection. J Acoust Soc Am 60:911–918.

    Article  Google Scholar 

  • Patterson RD (1987) A pulse ribbon model of monaural phase perception. J Acoust Soc Am 82:1560–1586.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD (1994a) The sound of a sinusoid: time-domain models. J Acoust Soc Am 96:1419–1428.

    Google Scholar 

  • Patterson RD (1994b) The sound of a sinusoid: spectral models. J Acoust Soc Am 96:1409–1418.

    Google Scholar 

  • Patterson RD, Nimmo-Smith I (1986) Thinning periodicity detectors for modulated pulse streams. In: Moore BCJ, Patterson RD (eds), Auditory Frequency Selectivity. New York: Plenum Press, pp. 299–307.

    Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand M (1992) Complex sounds and auditory images. In: Cazals Y, Horner K, Demany L (eds), Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 429–446.

    Google Scholar 

  • Plack CJ, Carlyon RP (1995) Differences in frequency detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics. J Acoust Soc Am 98:1355–1364.

    Article  Google Scholar 

  • Plack CJ, White LJ (2000a) Perceived continuity and pitch perception. J Acoust Soc Am 108:1162–1169.

    CAS  PubMed  Google Scholar 

  • Plack CJ, White LJ (2000b) Pitch matches between unresolved complex tones differing by a single interpulse interval. J Acoust Soc Am 108:696–705.

    CAS  PubMed  Google Scholar 

  • Plomp R (1964) The ear as a frequency analyzer. J Acoust Soc Am 36:1628–1636.

    Google Scholar 

  • Plomp R (1965) Detectability threshold for combination tones. J Acoust Soc Am 37:1110–1123.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1967a) Pitch of complex tones. J Acoust Soc Am 41:1526–1533.

    CAS  PubMed  Google Scholar 

  • Plomp R (1967b) Beats of mistuned consonances. J Acoust Soc Am 42:462–474.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1970) Timbre as a multidimensional attribute of complex tones. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, pp. 397–414.

    Google Scholar 

  • Plomp R (1976) Aspects of tone sensation. London: Academic Press.

    Google Scholar 

  • Plomp R, Levelt WJM (1965) Tonal consonance and critical bandwidth. J Acoust Soc Am 38:545–560.

    Article  Google Scholar 

  • Pressnitzer D, Patterson RD (2001) Distortion products and the pitch of harmonic complex tones. In: Breebaart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R (eds), Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker, pp. 97–104.

    Google Scholar 

  • Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084.

    Article  CAS  PubMed  Google Scholar 

  • Pressnitzer D, Winter IM, de Cheveigné A (2002) Perceptual pitch shift for sounds with similar waveform autocorrelation. Acoust Res Lett Online 3:1–6.

    Google Scholar 

  • Pressnitzer D, de Cheveigné A, Winter IM (2004) Physiological correlates of the perceptual pitch shift of sounds with similar waveform autocorrelation. Acoust Res Lett Online 5:1–6.

    Google Scholar 

  • Raatgever J, Bilsen FA (1986) A central spectrum model of binaural processing. Evidence from dichotic pitch. J Acoust Soc Am 80:429–441.

    Article  CAS  PubMed  Google Scholar 

  • Rameau J-P (1750) Démonstration du principe de l’harmonie, Paris: Durand [reproduced in E.R. Jacobi (1968) Jean-Philippe Rameau, Complete theoretical writings, V3, American Institute of Musicology, pp. 154–254].

    Google Scholar 

  • Rayleigh Lord (1896) The theory of sound (2nd ed., 1945 reissue). New York: Dover.

    Google Scholar 

  • Ritsma RJ (1967) Frequencies dominant in the perception of the pitch of complex tones. J Acoust Soc Am 42:191–198.

    Article  CAS  PubMed  Google Scholar 

  • Roederer JG (1975) Introduction to the Physics and Psychophysics of Music. New York: Springer.

    Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

    CAS  PubMed  Google Scholar 

  • Ross MJ, Shaffer HL, Cohen A, Freudberg R, Manley HJ (1974) Average magnitude difference function pitch extractor. IEEE Trans ASSP 22:353–362.

    Google Scholar 

  • Ruggero MA (1973) Response to noise of auditory nerve fibers in the squirrel monkey. J Neurophysiol 36:569–587.

    CAS  PubMed  Google Scholar 

  • Ruggero MA (1992) Physiology of the auditory nerve. In Popper AN, Fay RR (eds), the Mammlian Auditory Pathway: Neurophysiology. New York: Springer, pp. 34–93.

    Google Scholar 

  • Rutherford E (1886) A new theory of hearing. J Anat Physiol 21:166–168.

    Google Scholar 

  • Sabine WC (1907) Melody and the origin of the musical scale. In: Hunt FV (ed), Collected Papers on Acoustics by Wallace Clement Sabine (1964). New York: Dover, pp. 107–116.

    Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66:470–479.

    Article  CAS  PubMed  Google Scholar 

  • Sahey TL, Nodar RH, Musiek FE (1997) Efferent Auditory System. San Diego: Singular.

    Google Scholar 

  • Sauveur J (1701) Système général des intervales du son, Mémoires de l’Académie Royale des Sciences 279–300:347–354 (translated and reprinted in Lindsay, 1973, pp. 88–94).

    Google Scholar 

  • Scheffers MTM (1983) Sifting vowels. PhD Thesis, University of Gröningen.

    Google Scholar 

  • Schouten JF (1938) The perception of subjective tones. Proc Kon Acad Wetensch (Neth.) 41:1086–1094 (reprinted in Schubert 1979, 146–154).

    Google Scholar 

  • Schouten JF (1940a) The residue, a new component in subjective sound analysis. Proc Kon Acad Wetensch (Neth.) 43:356–356.

    Google Scholar 

  • Schouten JF (1940b) The residue and the mechanism of hearing. Proc Kon Acad Wetensch (Neth.) 43:991–999.

    Google Scholar 

  • Schouten JF (1940c) The perception of pitch. Philips Tech Rev 5:286–294.

    Google Scholar 

  • Schouten JF (1970) The residue revisited. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. London: Sijthoff, pp. 41–58.

    Google Scholar 

  • Schouten JF, Ritsma RJ, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Am 34:1418–1424.

    Google Scholar 

  • Schroeder MR (1968) Period histogram and product spectrum: new methods for fundamental-frequency measurement. J Acoust Soc Am 43:829–834.

    CAS  PubMed  Google Scholar 

  • Schubert ED (1978) History of research on hearing. In Carterette EC, Friedman MP (eds), Handbook of Perception, Vol. IV. New York: Academic Press, pp. 41–80.

    Google Scholar 

  • Schubert ED (1979) Psychological acoustics (Benchmark papers in Acoustics, Vol 13). Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Sek A, Moore BCJ (1999) Discrimination of frequency steps linked by glides of various durations. J Acoust Soc Am 106:351–359.

    Article  CAS  PubMed  Google Scholar 

  • Semal C, Demany L (1990) The upper limit of musical pitch. Music Percept 8:165–176.

    Google Scholar 

  • Shackleton TM, Carlyon RP (1994) The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. J Acoust Soc Am 95:3529–3540.

    CAS  PubMed  Google Scholar 

  • Shamma SA (1985) Speech processing in the auditory system II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632.

    CAS  PubMed  Google Scholar 

  • Shamma S, Klein D (2000) The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J Acoust Soc Am 107:2631–2644.

    CAS  PubMed  Google Scholar 

  • Shamma SA, Shen N, Gopalaswamy P (1989) Stereausis: binaural processing without neural delays. J Acoust Soc Am 86:989–1006.

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci USA 99:3318–3323.

    Article  CAS  PubMed  Google Scholar 

  • Siebert WM (1968) Stimulus transformations in the auditory system. In: Kolers PA, Eden M (eds), Recognizing Patterns. Cambridge, MA: MIT Press, pp. 104–133.

    Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: place or periodicity mechanisms. Proc IEEE 58:723–730.

    Google Scholar 

  • Slaney M (1990) A perceptual pitch detector. Proc ICASSP, 357–360.

    Google Scholar 

  • Smoorenburg GF (1970) Pitch perception of two-frequency stimuli. J Acoust Soc Am 48:924–942.

    Article  CAS  PubMed  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    Article  CAS  PubMed  Google Scholar 

  • Tannery M-P, de Waard C (1970) Correspondance du P. Marin Mersenne, Vol. XI(1642). Paris: Editions du CNRS.

    Google Scholar 

  • Tasaki I (1954) Nerve impulses in individual auditory nerve fibers of guinea pig. J Neurophysiol 17:97–122.

    CAS  PubMed  Google Scholar 

  • Terhardt E (1974) Pitch, consonance and harmony. J Acoust Soc Am 55:1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Terhardt E (1978) Psychoacoustic evaluation of musical sounds. Percept Psychophys 23: 483–492.

    CAS  PubMed  Google Scholar 

  • Terhardt E (1979) Calculating virtual pitch. Hear Res 1:155–182.

    Article  CAS  PubMed  Google Scholar 

  • Terhardt E (1991) Music perception and sensory information acquisistion: relationships and low-level analogies. Music Percept 8:217–240.

    Google Scholar 

  • Terhardt E, Stoll G, Seewann M (1982) Algorithm for extraction of pitch and pitch salience from complex tonal signals. J Acoust Soc Am 71:679–688.

    Google Scholar 

  • Thompson SP (1882) On the function of the two ears in the perception of space. Phil Mag (S5) 13:406–416.

    Google Scholar 

  • Thorpe S, Fize F, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522.

    Article  CAS  PubMed  Google Scholar 

  • Thurlow WR (1963) Perception of low auditory pitch: a multicue mediation theory. Psychol Rev 70:461–470.

    CAS  PubMed  Google Scholar 

  • Tong YC, Blamey PJ, Dowell RC, Clark GM (1983) Psychophysical studies evaluating the feasability of speech processing strategy for a multichannel cochlear implant. J Acoust Soc Am 74:73–80.

    Article  CAS  PubMed  Google Scholar 

  • Troland LT (1930) Psychophysiological considerations related to the theory of hearing. J Acoust Soc Am 1:301–310.

    Article  Google Scholar 

  • Turner RS (1977) The Ohm-Seebeck dispute, Hermann von Helmholtz, and the origins of physiological acoustics. Brit J Hist Sci 10:1–24.

    CAS  Google Scholar 

  • van Noorden L (1982) Two channel pitch perception. In Clynes M (ed), Music, Mind, and Brain. London: Plenum Press, pp. 251–269.

    Google Scholar 

  • Versnel H, Shamma S (1998) Spectral-ripple representation of steady-state vowels. J Acoust Soc Am 103:5502–2514.

    Article  Google Scholar 

  • von Békésy G, Rosenblith WA (1948) The early history of hearing—observations and theories. J Acoust Soc Am 20:727–748.

    Google Scholar 

  • von Helmholtz H (1857, translated by A.J. Ellis, reprinted in Warren & Warren 1968) On the Physiological Causes of Harmony in Music, pp. 25–60.

    Google Scholar 

  • von Helmholtz H (1877) On the Sensations of Tone (English translation A.J. Ellis, 1885, 1954). New York: Dover.

    Google Scholar 

  • Ward WD (1999) Absolute pitch. In: Deutsch D (ed), The Psychology of Music. Orlando: Academic Press, pp. 265–298.

    Google Scholar 

  • Warren RM, Warren RP (1968) Helmholtz on Perception: Its Physiology and Development. New York: John Wiley & Sons.

    Google Scholar 

  • Warren JD, Uppenkamp S, Patterson RD, Griffith TD (2003) Separating pitch chroma and pitch height in the human brain. Proc Natl Acad Sci USA 100:10038–19942.

    CAS  PubMed  Google Scholar 

  • Watt HJ (1917) The Psychology of Sound. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Physical Rev 23:266–285 (reproduced in Schubert 1979, 201–211).

    Article  Google Scholar 

  • Weintraub M (1985) A theory and computational model of auditory monaural sound separation. PhD Thesis, Stanford University.

    Google Scholar 

  • Wever EG (1949) Theory of Hearing. New York: Dover.

    Google Scholar 

  • Wever EG, Bray CW (1930) The nature of acoustic response: the relation between sound frequency and frequency of impulses in the auditory nerve. J Exp Psychol 13:373–387.

    Google Scholar 

  • Whitfield IC (1970) Central nervous processing in relation to spatio-temporal discrimination of auditory patterns. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, pp. 136–152.

    Google Scholar 

  • Wiegrebe L (2001) Searching for the time constant of neural pitch integration. J Acoust Soc Am 109:1082–1091.

    Article  CAS  PubMed  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 116:1207–1218.

    Google Scholar 

  • Wiegrebe L, Patterson RD, Demany L, Carlyon RP (1998) Temporal dynamics of pitch strength in regular interval noises. J Acoust Soc Am 104:2307–2313.

    Article  CAS  PubMed  Google Scholar 

  • Wiegrebe L, Stein A, Meddis R (2005) Coding of pitch and amplitude modulation in the auditory brainstem: one common mechanism? In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Psychophysics, Physiology and Modeling. New York: Springer, pp. 117–125.

    Google Scholar 

  • Wightman FL (1973) The pattern-transformation model of pitch. J Acoust Soc Am 54:407–416.

    CAS  PubMed  Google Scholar 

  • Yost WA (1996) Pitch strength of iterated rippled noise. J Acoust Soc Am 100:3329–3335.

    CAS  PubMed  Google Scholar 

  • Young T (1800) Outlines of experiments and inquiries respecting sound and light. Philos Trans of the Royal Society of London 90:106–150 (and plates).

    Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403.

    CAS  PubMed  Google Scholar 

  • Zwicker E (1970) Masking and psychoacoustical excitation as consequences of the ear’s frequency analysis. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, pp. 376–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

de Cheveigné, A. (2005). Pitch Perception Models. In: Plack, C.J., Fay, R.R., Oxenham, A.J., Popper, A.N. (eds) Pitch. Springer Handbook of Auditory Research, vol 24. Springer, New York, NY. https://doi.org/10.1007/0-387-28958-5_6

Download citation

Publish with us

Policies and ethics