Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 183))

Abstract

Concepts and results involving random sets appeared in probabilistic and statistical literature long time ago. The origin of the modern concept of a random set goes as far back as the seminal book by A.N. Kolmogorov [22] (first published in 1933) where he laid out the foundations of probability theory. He wrote [22, p. 46]

Let G be a measurable region of the plane whose shape depends on chance; in other words let us assign to every elementary event ξ of a field of probability a definite measurable plane region G. In modern terminology, G is said to be a random set, which is not necessarily closed, see [37, Sec. 2.5]. It should be noted also that even before 1933 statisticians worked with confidence regions that can be naturally described as random sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artstein, Z. and Vitale, R. A. (1975). A strong law of large numbers for random compact sets. Ann. Probab. 3, 879–882.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aumann, R. J. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  3. Baddeley, A. J. and Molchanov, I. S. (1997). On the expected measure of a random set. In D. Jeulin, editor, Advances in Theory and Applications of Random Sets, 3–20, Singapore. Proceedings of the International Symposium held in Fontainebleau, France (9–11 October 1996), World Scientific.

    Google Scholar 

  4. Beer, G. (1993). Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht.

    MATH  Google Scholar 

  5. Berg, C., Christensen, J. P. R. and Ressel, P. (1984). Harmonic Analysis on Semigroups. Springer, Berlin.

    MATH  Google Scholar 

  6. Choquet, G. (1953/54). Theory of capacities. Ann. Inst. Fourier 5, 131–295.

    MathSciNet  Google Scholar 

  7. Effros, E. G. (1965). Convergence of closed subsets in a topological space. Proc. Amer. Math. Soc. 16, 929–931.

    Article  MATH  MathSciNet  Google Scholar 

  8. Falconer, K. J. (1990). Fractal Geometry. Wiley, Chichester.

    MATH  Google Scholar 

  9. Fell, J. M. G. (1962). A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc. 13, 472–476.

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, D.-J. and Feng, D. (2004). On a statistical framework for estimation from random set observations. J. Theoret. Probab. 17, 85–110.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (1980). A Compendium of Continuous Lattices. Springer, Berlin.

    MATH  Google Scholar 

  12. Giné, E. and Hahn, M. G. (1985). Characterization and domains of attraction of p-stable compact sets. Ann. Probab. 13, 447–468.

    Article  MATH  MathSciNet  Google Scholar 

  13. Giné, E. and Hahn, M. G. (1985). M-infinitely divisible random sets. Lect. Notes Math. 1153, 226–248.

    Google Scholar 

  14. Giné, E., Hahn, M. G. and Zinn, J. (1983). Limit theorems for random sets: application of probability in Banach space results. In A. Beck and K. Jacobs, editors, Probability in Banach spaces, IV (Oberwolfach, 1982), volume 990 of Lect. Notes Math., 112–135. Springer, Berlin.

    Chapter  Google Scholar 

  15. Graf, S. (1980). A Radon-Nikodym theorem for capacities. J. Reine Angew. Math. 320, 192–214.

    MATH  MathSciNet  Google Scholar 

  16. Heijmans, H. J. A. M. and Molchanov, I. S. (1998). Morphology on convolution lattices with applications to the slope transform and random set theory. J. Math. Imaging and Vision 8, 199–214.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hess, C. (1999). Conditional expectation and martingales of random sets. Pattern Recognition 32, 1543–1567.

    Article  Google Scholar 

  18. Hess, C. (1999). The distribution of unbounded random sets and the multivalued strong law of large numbers in nonreflexive Banach spaces. J. Convex Analysis 6, 163–182.

    MATH  MathSciNet  Google Scholar 

  19. Himmelberg, C. (1974). Measurable relations. Fund. Math. 87, 53–72.

    MathSciNet  Google Scholar 

  20. Jeulin, D. (1997). Morphological Models of Random Structures. CRC Press, Boca Raton, Florida.

    Google Scholar 

  21. Kendall, D. G. (1974). Foundations of a theory of random sets. In E. F. Harding and D. G. Kendall, editors, Stochastic Geometry, 322–376. Wiley, New York.

    Google Scholar 

  22. Kolmogorov, A. N. (1950). Foundations of the Theory of Probability. Chelsea, New York.

    Google Scholar 

  23. Kolmogorov, A. N. and Leontovitch, M. A. (1992). On computing the mean Brownian area. In A. N. Shiryaev, editor, Selected works of A. N. Kolmogorov, Volume II: Probability and mathematical statistics, volume 26 of Mathematics and its applications (Soviet series), 128–138. Kluwer, Dordrecht, Boston, London.

    Google Scholar 

  24. Korostelev, A. P. and Tsybakov, A. B. (1993). Minimax Theory of Image Restoration. Springer, New York.

    Google Scholar 

  25. Lyashenko, N. N. (1983). Statistics of random compacts in the Euclidean space. J. Soviet Math. 21, 76–92.

    Article  MATH  Google Scholar 

  26. Matheron, G. (1967). Eléments pour une Théorie des Milieux Poreux. Masson, Paris.

    Google Scholar 

  27. Matheron, G. (1969). Théorie des ensembles aléatoires. Technical report, Les Cahiers du Centre de Morphologie Mathematique, Fascicule 4, Paris School of Mines.

    Google Scholar 

  28. Matheron, G. (1972). Ensembles fermés aléatoires, ensembles semi-Markoviens et polyèdres poissoniens. Adv. Appl. Probab. 4, 508–541.

    Article  MATH  MathSciNet  Google Scholar 

  29. Matheron, G. (1975). La convergence en loi des fermés aléatoires. Technical Report Internal Report N-409, Paris School of Mines, Fontenebleau.

    Google Scholar 

  30. Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York.

    MATH  Google Scholar 

  31. Molchanov, I. S. (1987). Uniform laws of large numbers for empirical associated functionals of random closed sets. Theory Probab. Appl. 32, 556–559.

    Article  MATH  MathSciNet  Google Scholar 

  32. Molchanov, I. S. (1990). Empirical estimation of distribution quantiles of random closed sets. Theory Probab. Appl. 35, 594–600.

    Article  MATH  MathSciNet  Google Scholar 

  33. Molchanov, I. S. (1993). Limit Theorems for Unions of Random Closed Sets, volume 1561 of Lect. Notes Math.. Springer, Berlin.

    MATH  Google Scholar 

  34. Molchanov, I. S. (1997). Statistical problems for random sets. In J. Goutsias, R. Mahler and H. T. Nguyen, editors, Applications and Theory of Random Sets, volume 97 of The IMA Volumes in Mathematics and its Applications, 27–45, Berlin. Springer.

    Google Scholar 

  35. Molchanov, I. S. (1997). Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley, Chichester.

    MATH  Google Scholar 

  36. Molchanov, I. S. (1998). Random sets in view of image filtering applications. In E. R. Dougherty and J. Astola, editors, Nonlinear Filters for Image Processing, chapter 10. SPIE.

    Google Scholar 

  37. Molchanov, I. (2005). Theory of Random Sets. Springer, New York.

    MATH  Google Scholar 

  38. Nguyen, H. T. and Nguyen, N. T. (1998). A negative version of Choquet theorem for Polish spaces. East-West J. Math. 1, 61–71.

    MATH  MathSciNet  Google Scholar 

  39. Norberg, T. (1984). Convergence and existence of random set distributions. Ann. Probab. 12, 726–732.

    Article  MATH  MathSciNet  Google Scholar 

  40. Norberg, T. (1989). Existence theorems for measures on continuous posets, with applications to random set theory. Math. Scand. 64, 15–51.

    MATH  MathSciNet  Google Scholar 

  41. Peres, Y. (1996). Intersection-equivalence of Brownian paths and certain branching processes. Comm. Math. Phys. 177, 417–434.

    Article  MATH  MathSciNet  Google Scholar 

  42. Ripley, B. D. and Rasson, J.-P. (1977). Finding the edge of a Poisson forest. J. Appl. Probab. 14, 483–491.

    Article  MATH  MathSciNet  Google Scholar 

  43. Robbins, H. E. (1944). On the measure of a random set. I. Ann. Math. Statist. 15, 70–74.

    Article  MathSciNet  MATH  Google Scholar 

  44. Robbins, H. E. (1945). On the measure of a random set. II. Ann. Math. Statist. 16, 342–347.

    Article  MathSciNet  MATH  Google Scholar 

  45. Rockafellar, R. T. and Wets, R. J.-B. (1998). Variational Analysis. Springer, Berlin.

    MATH  Google Scholar 

  46. Salinetti, G. and Wets, R. J.-B. (1986). On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11, 385–419.

    Article  MATH  MathSciNet  Google Scholar 

  47. Schneider, R. (1988). Random approximations of convex sets. J. Microscopy 151, 211–227.

    Google Scholar 

  48. Serra, J. (1989). Boolean random functions. J. Microscopy 156, 41–63.

    Google Scholar 

  49. Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and its Applications. Wiley, Chichester, second edition.

    MATH  Google Scholar 

  50. Sznitzman, A.-S. (1998). Brownian Motion, Obstacles and Random Media. Springer, Berlin.

    Google Scholar 

  51. Weil, W. (1982). An application of the central limit theorem for Banach-spacevalued random variables to the theory of random sets. Z. Wahrsch. verw. Gebiete 60, 203–208.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Molchanov, I. (2005). Random Closed Sets. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds) Space, Structure and Randomness. Lecture Notes in Statistics, vol 183. Springer, New York, NY. https://doi.org/10.1007/0-387-29115-6_7

Download citation

Publish with us

Policies and ethics