Skip to main content

Diversity Mechanisms in Pitt-Style Evolutionary Classifier Systems

  • Chapter

Part of the book series: Massive Computing ((MACO,volume 6))

Abstract

In this chapter we investigate the application of diversity-preserving mechanisms in Pitt-style evolutionary classifier systems. Specifically, we analyze the effects of implicit fitness sharing, spatially distributed subpopulations, and combinations of the two, using a range of standard knowledge discovery tasks. The proposed models are compared based on (a) their ability to promote and/or maintain diversity across the evolving population; (b) the ability of the algorithm to evolve rule sets, which accurately classify data; and (c) the relative ease of parallel implementation of the models. Conclusions are drawn regarding the suitability of the approaches in both sequential and parallel environments.

Triantaphyllou, E. and G. Felici (Eds.), Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques, Massive Computing Series, Springer, Heidelberg, Germany, pp. 433–457, 2006.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbass, H. A., Sarker, R., & Newton, C. (Eds.). (2002). Data Mining: A Heuristic Approach. Hershey, PA: IGP publishing.

    Google Scholar 

  • Basset, J. K., & Jong, K. A. D. (2000). Evolving Behaviours for Cooperating Agents. Paper presented at the Twelfth International Symposium on Methodologies for Intelligent Systems, Lecture Notes in Artificial Intelligence 1932, Berlin, Springer.

    Google Scholar 

  • Belding, T. C. (1995). The Distributed Genetic Algorithm Revisited. Paper presented at the Sixth International Conference on Genetic Algorithms.

    Google Scholar 

  • Bleuler, S., Brack, M, Thiele, L., & Zitzler, E. (2001). Multiobjective genetic programming: Reducing blot using SPEA2. Paper presented at the IEEE 2001 Congress on Evolutionary Computation.

    Google Scholar 

  • Bradley, P. S., Fayyad, U. M., & Mangasarian, O. L. (1999). Mathematical Programming for Data Mining: Formulations and Challenges. INFORMS Journal on Computing, 11, 217–238.

    Article  MATH  MathSciNet  Google Scholar 

  • Breiman, L. (1996). Stacked Regressions. Machine Learning, 24, 49–64.

    MATH  MathSciNet  Google Scholar 

  • Burke, E., Gustafson, S., & Kendall, G. (2002). A Survey and Analysis of Diversity Measures in Genetic Programming. In W. B. Langdon et al. (eds) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann Publishers, pp 716–723

    Google Scholar 

  • Cantú-Paz, E. (2000). Efficient Parallel Genetic Algorithms’: Kluwer Academic Publishers.

    Google Scholar 

  • Cantú-Paz, E. (2001). Migration Policies, Selection Pressure, and Parallel Evolutionary Algorithms. Journal of Heuristics, 7(3), 311–334.

    Article  MATH  Google Scholar 

  • Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated Equilibria: a Parallel Genetic Algorithm. Paper presented at the Second International Conference on Genetic Algorithm.

    Google Scholar 

  • Darwen, P., & Yao, X. (1995). A dilemma for fitness sharing with a scaling function. Paper presented at the IEEE Conference on Evolutionary Computation.

    Google Scholar 

  • Deb, K. and Goldberg, D.E. (1989). An investigation of niche and species formation in genetic function optimisation. In J.D. Schaffer (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp 42–50.

    Google Scholar 

  • DeJong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems. Unpublished PhD, University of Michigan.

    Google Scholar 

  • DeJong, K. (1988). Learning with Genetic Algorithms: An Overview. Machine Learning, 3(2), 121–138.

    Google Scholar 

  • Freitas, A. A. (2003). A survey of evolutionary algorithms for data mining and knowledge discovery. In A. Ghosh & S. Tsutsui. (Eds.), Advances in Evolutionary Computation: Springer-Verlag. (pre-print, unformatted version available at http://www.ppgia.pucpr.br/~alex/papers.html)

    Google Scholar 

  • Garell, J. M., Golobardes, E., Mansilla E.B., & Llora, X. (1999). Automatic Diagnosis with Genetic Algorithms and Case-Based Reasoning. Artificial Intelligence in Engineering, 13, 367–372.

    Article  Google Scholar 

  • Gen, M., & Chang, R. (2000). Genetic Algorithms and Engineering Applications. New York, N.Y., USA: John Wiley & Sons.

    Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms: in search optimization and machine learning: New York, N.Y., Addison Wesley.

    MATH  Google Scholar 

  • Hansen, L., & Salamon, P. (1990). Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 993–1001.

    Article  Google Scholar 

  • Holland, J. (1998). Adaptation in natural and artificial systems: MIT press.

    Google Scholar 

  • Holland, J., Booker, L. B., Colombetti, M., Dorigo, M., Goldberg, D., Forrest, S., Riolo, R. L., Smith, R. E., Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (2000). What is a Learning Classifier System? In P. Lanzi & W. Stolzmann & S. Wilson (Eds.), Learning Classifier Systems, From Foundations to Applications (Vol. LNAI 1813, pp. 3–32): Springer-Verlag.

    Google Scholar 

  • Horn, J. (1997). The nature of niching: Genetic Algorithms and the evolution of optimal, cooperative populations (PhD): University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Kirley, M. (2002). A Cellular Genetic Algorithm with Disturbances: Optimisation Using Dynamic Spatial Interactions. Journal of Heuristics, 8(3), 321–242.

    Article  MATH  Google Scholar 

  • Kuncheva, L. I., Whitaker, C. A., Shipp, C. A., & Duin, R. P. W. (2000, 3–8 September). Is independence good for combining classifiers? Paper presented at the 15th International Conference on Pattern Recognition, Barcelona, Spain.

    Google Scholar 

  • Lanzi, P. L., & Riolo, R. L. (2000). A Roadmap to the Last Decade of Learning Classifier System Research. In P. Lanzi & W. Stolzmann & S. Wilson (Eds.), Learning Classifier Systems, From Foundations to Applications (Vol. LNAI 1813, pp. 33–62): Springer-Verlag.

    Google Scholar 

  • Liu, Y., & Yao, X. (1999). Simultaneously training of negatively correlated neural networks in an ensemble. IEEE Trans. Syst. Man. Cybern. B., 296, 716–725.

    Google Scholar 

  • Llora, X., & Garrell, J. M. (2001). Knowledge-Independent Data Mining With Fine-Grained Evolutionary Algorithms. Paper presented at the Genetic and Evolutionary Computation Conference, pp 461–468, Morgan Kaufmann.

    Google Scholar 

  • Mahfoud, S. (1995). A comparison of parallel and sequential niching methods. Paper presented at the Sixth International Conference on Genetic Algorithms.

    Google Scholar 

  • Manderick, B., & Spiessens, P. (1989). Fine-Grained Parallel Genetic Algorithms. Paper presented at the Third International Conference on Genetic Algorithms.

    Google Scholar 

  • Mansilla, E.B., Mekaouche, A Guiu, J. M. G. (1999). A Study of a Genetic Classifier System Based on the Pittsburgh Approach on a Medical Domain In I. F. Imam et al. (eds). Multiple Approaches to Intelligent Systems. 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems IEA/AIE-99. Lecture Notes in Computer Science. Vol. 1611, pp. 175–184

    Google Scholar 

  • McKay, R. I., & Abbass, H. A. (2001). Anti-correlation: A Diversity Promoting Mechanisms in Ensemble Learning. The Australian Journal of Intelligent Information Processing Systems, 7(3/4), 139–149.

    Google Scholar 

  • Merz, C. J., & Murphy, P. M. (1998). UCI repository for Machine Learning Data Base. Irvine CA., University of California. Department of Information and Computer Science. Retrieved, from the World Wide Web: http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  • Mitchell, M. (1996). An Introduction to Genetic Algorithms: MIT Press.

    Google Scholar 

  • Mühlenbein, H., Gorges-Schleuter, M., & Krämer, O. (1988). Evolutionary algorithms in combinatorial optimization. Parallel Computing, 7, 65–88.

    Article  MATH  Google Scholar 

  • Nordin, P., & Banzhaf, W. (1995). Complexity Compression and Evolution. Paper presented at the Sixth International Conference.

    Google Scholar 

  • Quinlan, R. (1993). C4.5: Programs for Machine Learning: Morgan Kaufmann.

    Google Scholar 

  • Ragsdale, C. T. (2001). Spreadsheet Modeling and Decision Analysis. USA: South-Western College Publishing.

    Google Scholar 

  • Riolo, R. L. (1987). Bucket Brigade Performance: I Long Sequences of Classifiers. Paper presented at the Second International Conference on Genetic Algorithms (ICGA87), Cambridge, MA.

    Google Scholar 

  • Scott, D. W. (1992). Mutivariate Density Estimation. New York: John Wiley and Sons.

    Google Scholar 

  • Sharkey, A. J. C. (1999). Multi-Net Systems, Combining Artificial Neural Nets Ensemble and Modular Multi-Net Systems (pp. 1–27): Springer.

    Google Scholar 

  • Smith, R. E. (1994). Memory Exploitation in Learning Classifier Systems. Evolutionary Computation, 2(3), 199–220.

    MATH  Google Scholar 

  • Smith, R. E., Forrest, S., & Perlson, A. S. (1992). Searching for diverse cooperative populations with genetic algorithms. Evolutionary Computation, 12, 127–149.

    Google Scholar 

  • Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. Unpublished PhD, University of Pittsburgh, Pittsburgh, PA, U.S.A.

    Google Scholar 

  • Tanese, R. (1989). Distributed genetic algorithms. Paper presented at the third International Conference on Genetic Algorithms.

    Google Scholar 

  • Turner, K., & Ghosh, J. (1999). Linear and order statistics combiners for pattern classification, Combining Artificial Neural Nets Ensemble and Modular Multi-Net Systems (pp. 127–157). Berlin: Springer.

    Google Scholar 

  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.

    Article  Google Scholar 

  • Wilson, S. W. (1995). Classifier Fitness Based on Accuracy. Evolutionary Computation, 32, 149–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kirley, M., Abbass, H.A., McKay, R.(.I. (2006). Diversity Mechanisms in Pitt-Style Evolutionary Classifier Systems. In: Triantaphyllou, E., Felici, G. (eds) Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Massive Computing, vol 6. Springer, Boston, MA . https://doi.org/10.1007/0-387-34296-6_13

Download citation

  • DOI: https://doi.org/10.1007/0-387-34296-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34294-8

  • Online ISBN: 978-0-387-34296-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics