Skip to main content

Primary Bone Tumors

  • Chapter

Abstract

Musculoskeletal sarcomas represent a heterogeneous group of malignancies involving bone and soft tissue with a highly variable natural history and a correspondingly diverse range of potential therapeutic strategies. The choice of treatment is largely driven by prognostic factors but is also dependent on local expertise, resources, and philosophies and the particular clinical circumstances of individual patients. Important considerations include the type, grade, extent, and location of the tumor. Curative treatment approaches in osteogenic sarcoma combine surgery and chemotherapy. In Ewing sarcoma, chemotherapy is used, and local control is achieved by surgery, radiotherapy, or a combination of both (1-3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phan A, Patel S. Advances in neoadjuvant chemotherapy in soft tissue sarcomas. Curr Treat Options Oncol 2003;4(6):433–439.

    Article  PubMed  Google Scholar 

  2. Bacci G, Lari S. Current treatment of high grade osteosarcoma of the extremity: review. J Chemother 2001;13(3):235–243.

    CAS  PubMed  Google Scholar 

  3. Ballo MT, Zagars GK. Radiation therapy for soft tissue sarcoma. Surg Oncol Clin North Am 2003;12:449–467.

    Article  Google Scholar 

  4. Meyers PA, Gorlick R. Osteosarcoma. Pediatr Clin North Am 1997;4: 973–989.

    Article  Google Scholar 

  5. Grier HE. The Ewing family of tumors. Pediatr Clin North Am 1997;4: 991–1104.

    Article  Google Scholar 

  6. Mirra JM. Osteosarcoma: intramedullary variants. In: Mirra JM, ed. Bone Tumors. Philadelphia: Lea & Febiger, 1989:249–389.

    Google Scholar 

  7. Mirra JM, Picci P. Ewing’s sarcoma. In: Mirra JM, ed. Bone Tumors. Philadelphia: Lea & Febiger, 1989:1087–1117.

    Google Scholar 

  8. Arndt CAS, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 1999;341(5):342–352.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Galindo C, Spunt SL, Pappo AS. Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med Pediatr Oncol 2003;40:276–287.

    Article  PubMed  Google Scholar 

  10. Bruland OS, Pihl A. On the current management of osteosarcoma: a critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer 1997;33:1725–1731.

    Article  CAS  PubMed  Google Scholar 

  11. Raymond AK, Chawla SP, Carrasco CH, et al. Osteosarcoma chemotherapy effect: a prognostic factor. Semin Diagn Pathol 1987;4:212–236.

    CAS  PubMed  Google Scholar 

  12. Eary JF, Conrad EU, Bruckner JD, et al. Quantitative [F-18] fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 1998;4:1215–1220.

    CAS  PubMed  Google Scholar 

  13. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med 2003;44(6):930–942.

    PubMed  Google Scholar 

  14. Messa C, Landoni C, Pozzato C, Fazio F. Is there a role for FDG PET in the diagnosis of musculoskeletal neoplasms? J Nucl Med 2000;41(10): 1702–1703.

    CAS  PubMed  Google Scholar 

  15. Oliveira AM, Nascimento AG. Grading in soft tissue tumors: principles and problems. Skeletal Radiol 2001;30:543–559.

    Article  CAS  PubMed  Google Scholar 

  16. Hicks RJ. Nuclear medicine techniques provide unique physiologic characterization of suspected and known soft tissue and bone sarcomas. Acta Orthop Scand 1997;273(suppl):25–36.

    CAS  Google Scholar 

  17. Hicks RJ. Functional imaging techniques for evaluation of sarcomas. Cancer Imaging 2005;5:58–65.

    Article  PubMed  Google Scholar 

  18. Hicks RJ, Toner G, Choong PFM. Clinical applications of molecular imaging in sarcoma evaluation. Cancer Imaging 2005;5:66–72.

    Article  PubMed  Google Scholar 

  19. Miller SL, Hoffer FA. Malignant and benign bone tumors. Radiol Clin North Am 2001;39:673.

    Article  CAS  PubMed  Google Scholar 

  20. Siegel MJ. Magnetic resonance imaging of musculoskeletal soft tissue masses. Radiol Clin North Am 2001;39:701–720.

    Article  CAS  PubMed  Google Scholar 

  21. Rosen G, Caparros B, Groshen S. Primary osteogenic sarcoma of the femur: a model for the use of preoperative chemotherapy in high risk malignant tumours. Cancer Invest 1984;2:181–192.

    Article  CAS  PubMed  Google Scholar 

  22. Picci P, Rougraff BT, Bacci G, et al. Prognostic significance of histopathologic response to chemotherapy in non metastatic Ewing sarcoma of the extremity. J Clin Oncol 1993;11:1763–1769.

    CAS  PubMed  Google Scholar 

  23. San-Julian M, Dolz R, Garcia-Barrecheguren E, et al. Limb salvage in bone sarcomas in patients younger than age 10. J Pediatr Orthop 2003;23: 753–762.

    PubMed  Google Scholar 

  24. Wodajo FM, Bickels J, Wittig J, Malawer M. Complex reconstruction in the management of extremity sarcomas. Curr Opinion Oncol 2003;15:304–312.

    Article  CAS  Google Scholar 

  25. Picci P, Sangiorgi L, Rougraff BT, et al. Relationship of chemotherapyinduced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol 1994;12:2699–2705.

    CAS  PubMed  Google Scholar 

  26. Glasser D, Lane J, Huvos A, et al. Survival, prognosis and therapeutic response in osteogenic sarcoma: the Memorial Hospital experience. Cancer 1992;69:698–708.

    Article  CAS  PubMed  Google Scholar 

  27. Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003;33:193–204.

    Article  PubMed  Google Scholar 

  28. Kern KA, Brunetti A, Norton JA, et al. Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 1988;29:181–186.

    CAS  PubMed  Google Scholar 

  29. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991;32(8):1508–1512.

    CAS  PubMed  Google Scholar 

  30. Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2–[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 1993;17:582–589.

    Article  CAS  PubMed  Google Scholar 

  31. Eary JF, O’sullivan F, Powitan Y, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 2002;29(9):1149–1154.

    Article  CAS  PubMed  Google Scholar 

  32. Folpe AL, Lyles RH, Sprouse JT, Conrad EU III, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 2000;6(4):1279–1287.

    CAS  PubMed  Google Scholar 

  33. Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000; 41(10):1695–1701.

    CAS  PubMed  Google Scholar 

  34. Feldman F, van Heertum R, Manos C. 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 2003;32(4):201–208.

    Article  PubMed  Google Scholar 

  35. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, et al. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002;43(4):510–518.

    PubMed  Google Scholar 

  36. Aoki J, Watanabe H, Shinozaki T, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001;219(3):774–777.

    CAS  PubMed  Google Scholar 

  37. Watanabe H, Shinozaki T, Yanagawa T, et al. Glucose metabolic analysis of musculoskeletal tumours using 18-fluorine-FDG PET as an aid to preoperative planning. J Bone Joint Surg [Br] 2000;82(5):760–767.

    Article  CAS  Google Scholar 

  38. Kole AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 1998;39(5):810–815.

    CAS  PubMed  Google Scholar 

  39. Franzius C, Bielack S, Flege S, Sciuk J, Jurgens H, Schober O. Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 2002;43(8):1012–1017.

    CAS  PubMed  Google Scholar 

  40. Jaramillo D, Laor T, Gebhardt MC. Pediatric musculoskeletal neoplasms: evaluation with MR imaging. MRI Clin North Am 1996;4(4):749–770.

    CAS  Google Scholar 

  41. Schulte M, Brecht-Krauss D, Werner M, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40(10):1637–1643.

    CAS  PubMed  Google Scholar 

  42. Franzius C, Daldrup-Link HE, Sciuk J, et al. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 2001;12:479–486.

    Article  CAS  PubMed  Google Scholar 

  43. Lucas JD, O’Doherty MJ, Wong JC, et al. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg [Br] 1998;80:441–447.

    Article  CAS  Google Scholar 

  44. Pitman AG, Hicks RJ, Binns DS, et al. Performance of sodium iodide based 18F-fluorodeoxyglucose positron emission tomography in the characterisation of indeterminate pulmonary nodules or masses. Br J Radiol 2002;75:114–121.

    CAS  PubMed  Google Scholar 

  45. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 2000;27(9):1305–1311.

    Article  CAS  PubMed  Google Scholar 

  46. Franzius C, Daldrup-Link HE, Wagner-Bohn A, et al. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 2002;13:157–160.

    Article  CAS  PubMed  Google Scholar 

  47. Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 2001;177(1):229–236.

    CAS  PubMed  Google Scholar 

  48. Tacikowska M. Dynamic magnetic resonance imaging in soft tissue tumors—assessment of the diagnostic value of tumor enhancement rate indices. Med Sci Monitor 2002;8(4):MT53–MT57.

    Google Scholar 

  49. Negendank WG. MR spectroscopy of musculoskeletal soft-tissue tumors. MRI Clin North Am 1995;3:713–725.

    CAS  Google Scholar 

  50. Kostakoglu L, Panicek DM, Divgi CR, et al. Correlation of the findings of thallium-201 chloride scans with those of other imaging modalities and histology following therapy in patients with bone and soft tissue sarcomas [erratum in Eur J Nucl Med 1996;23(11):1558]. Eur J Nucl Med 1995;22(11): 1232–1237.

    Article  CAS  PubMed  Google Scholar 

  51. Jones DN, McCowage GB, Sostman HD, et al. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18–FDG PET. J Nucl Med 1996;37(9):1438–1444.

    CAS  PubMed  Google Scholar 

  52. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 2000;25(11):874–881.

    Article  CAS  PubMed  Google Scholar 

  53. Hawkins DS, Rajendran JG, Conrad EU III, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]- fluorodeoxy-D-glucose positron emission tomography [erratum appears in Cancer 2003;97(12):3130]. Cancer 2002;94(12):3277–3284.

    Article  CAS  PubMed  Google Scholar 

  54. Larson SM, Erdi Y, Akhurst T, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging: the Visual Response Score and the change in total lesion glycolysis. Clin Positron Imaging 1999;2(3):159–171.

    Article  PubMed  Google Scholar 

  55. Nair N, Ali A, Green AA, et al. Response of osteosarcoma to chemotherapy: evaluation with F-18 FDG-PET scans. Clin Positron Imaging 2000;3: 79–83.

    Article  PubMed  Google Scholar 

  56. Ma LD, Frassica FJ, Scott WW, et al. Differentiation of benign and malignant musculoskeletal tumors: potential pitfalls with MR imaging. Radiographics 1995;15:349–366.

    CAS  PubMed  Google Scholar 

  57. Garcia R, Kim EE, Wong FC, et al. Comparison of fluorine-18–FDG PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas. J Nucl Med 1996;37(9):1476–1479.

    CAS  PubMed  Google Scholar 

  58. el-Zeftawy H, Heiba SI, Jana S, et al. Role of repeated F-18 fluorodeoxyglucose imaging in management of patients with bone and soft tissue sarcoma. Cancer Biother Radiopharm 2001;16(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  59. Fletcher BD. Imaging pediatric bone sarcomas: diagnosis and treatment related issues. Radiol Clin North Am 1997;35:1477–1494.

    CAS  PubMed  Google Scholar 

  60. Hains SF, O’Doherty MJ, Lucas JD, Smith MA. Fluorodeoxyglucose PET in the evaluation of amputations for soft tissue sarcoma. Nucl Med Commun 1999;20(9):845–848.

    Article  Google Scholar 

  61. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962;3:332–334.

    CAS  PubMed  Google Scholar 

  62. Schiepers C, Nuyts J, Bormans G, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 1997; 38(12):1970–1976.

    CAS  PubMed  Google Scholar 

  63. Hoh CK, Hawkins RA, Dahlbom M, et al. Whole body skeletal imaging with [18F]fluoride ion and PET. J Comput Assist Tomogr 1993;17(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  64. Cook GJ, Fogelman I. Detection of bone metastases in cancer patients by 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography. Q J Nucl Med 2001;45(1):47–52.

    CAS  PubMed  Google Scholar 

  65. Schirrmeister H, Guhlmann A, Kotzerke J, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 1999; 17(8):2381–2389.

    CAS  PubMed  Google Scholar 

  66. Schirrmeister H, Glatting G, Hetzel J, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 2001;42(12):1800–1804.

    CAS  PubMed  Google Scholar 

  67. Schirrmeister H, Guhlmann A, Elsner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999;40(10):1623–1629.

    CAS  PubMed  Google Scholar 

  68. Even-Sapir E, Metser U, Flusser G, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 2004; 45(2):272–278.

    PubMed  Google Scholar 

  69. Jager PL, Franssen EJ, Kool W, et al. Feasibility of tumor imaging using L-3–[iodine-123]-iodo-alpha-methyl-tyrosine in extracranial tumors. J Nucl Med 1998;39(10):1736–1743.

    CAS  PubMed  Google Scholar 

  70. Tomiyoshi K, Amed K, Muhammad S, et al. Synthesis of isomers of 18F-labelled amino acid radiopharmaceutical: position 2- and 3-L-18Falpha-methyltyrosine using a separation and purification system. Nucl Med Commun 1997;18(169):175.

    Google Scholar 

  71. Watanabe H, Inoue T, Shinozaki T, et al. PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med 2000;27(10):1509–1517.

    Article  CAS  PubMed  Google Scholar 

  72. Been LB, Suurmeijer AJH, Cobben DCP, et al. [F18]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 2004; 31:1659–1672.

    Article  PubMed  Google Scholar 

  73. Cobben DC, Elsinga PH, Suurmeijer AJH, et al. Detection and grading of soft tissue sarcomas of the extremities with (18)F-fluoro-3’-deoxy-Lthymidine. Clin Cancer Res 2004;10:1685–1690.

    Article  CAS  PubMed  Google Scholar 

  74. Ishiwata K, Enomoto K, Sasaki T, et al. A feasibility study on L-[1-carbon-11]tyrosine and L-[methyl-carbon-11]methionine to assess liver protein synthesis by PET. J Nucl Med 1996;37(2):279–285.

    CAS  PubMed  Google Scholar 

  75. Inoue T, Kim EE, Wong FC, et al. Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med 1996;37(9):1472–1476.

    CAS  PubMed  Google Scholar 

  76. Hara T, Yuasa M. Automated synthesis of [11C]choline, a positron-emitting tracer for tumor imaging. Appl Radiat Isotopes 1999;50(3):531–533.

    Article  CAS  Google Scholar 

  77. Yanagawa T, Watanabe H, Inoue T, et al. Carbon-11 choline positron emission tomography in musculoskeletal tumors: comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Comput Assist Tomogr 2003;27(2):175–182.

    Article  PubMed  Google Scholar 

  78. Zhang H, Tian M, Oriuchi N, et al. 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Commun 2003;24(3):273–279.

    Article  CAS  PubMed  Google Scholar 

  79. De Grado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of 18Flabelled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Howman-Giles, R., Hicks, R.J., McCowage, G., Chung, D.K. (2006). Primary Bone Tumors. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics