Skip to main content

Recent Progress and Applications in Group FFTs

  • Conference paper
Computational Noncommutative Algebra and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 136))

Abstract

The Cooley-Tukey FFT can be interpreted as an algorithm for the effcient computation of the Fourier transform for finite cyclic groups, a compact group (the circle), or the non-compact group of the real line. These are all commutative instances of a “Group FFT.” We give a brief survey of some recent progress made in the direction of noncommutative generalizations and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Aldroubi and K. Grochenig. Non-uniform sampling and reconstruction shift-invariant spaces. SIAM Rev., 43 No. 4 (2001), pp. 585–620.

    Article  MathSciNet  Google Scholar 

  2. J. Arthur, Harmonic analysis and group representations, Notices. Amer. Math. Soc., 47(1) (2000), 26–34.

    MATH  MathSciNet  Google Scholar 

  3. U. Baum. Existence and effcient construction of fast Fourier transforms for supersolvable groups. Comput. Complexity 1 (1991), 235–256.

    Article  MATH  MathSciNet  Google Scholar 

  4. Robert Beals. Quantum computation of Fourier transforms over symmetric groups. In ACM, editor, Proceedings of the twenty-ninth annual ACM Symposium on the Theory of Computing: El Paso, Texas, May 4–6, 1997, pages 48–53, New York, NY, USA, 1997. ACM Press.

    Google Scholar 

  5. T. Beth. Verfahren der schnellen Fourier-Transformation. B. G. Teubner, Stuttgart, 1984.

    Google Scholar 

  6. L. Bluestein, A linear filtering approach to the computation of the discrete Fourier transform, IEEE Trans. AU-18 (1970), 451–455.

    Google Scholar 

  7. O. Bratteli. Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171 (1972), 195–234.

    MATH  MathSciNet  Google Scholar 

  8. O. Brigham. The Fast Fourier Transform and its Applications. Prentice Hall, NJ, 1988.

    Google Scholar 

  9. G. S. Chirikjian and A. B. Kyatkin. Engineering applications of noncommutative harmonic analysis, CRC Press, FL, 2000.

    Google Scholar 

  10. M. Clausen and U. Baum. Fast Fourier transforms, Bibliographisches Institut, Mannheim, 1993.

    Google Scholar 

  11. W. Cochran, et. al., What is the fast Fourier transform?, IEEE Transactions on Audio and Electroacoustics Vol. AU-15, No. 2 (1967), 45–55.

    MathSciNet  Google Scholar 

  12. J. W. Cooley and J. W. Tukey. An algorithm for machine calculation of complex Fourier series, Math. Comp., 19 (1965), 297–301.

    MathSciNet  Google Scholar 

  13. P. Diaconis. A generalization of spectral analysis with application to ranked data, Ann. Statist., 17(3), (1989), 949–979.

    MATH  MathSciNet  Google Scholar 

  14. P. Diaconis. Group representations in probability and statistics, IMS, Hayward, CA, 1988.

    Google Scholar 

  15. J. R. Driscoll and D. Healy. Computing Fourier transforms and convolutions on the 2-sphere. Proc. 34th IEEE FOCS, (1989) pp. 344–349 (extended abstract); Adv. in Appl. Math. 15 (1994), 202–250.

    Google Scholar 

  16. J. Driscoll and D. Healy and D. Rockmore. Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs, SIAM J. Comput., 26, No. 4, (1997), 1066–1099.

    Article  MathSciNet  Google Scholar 

  17. S. Egner and M. Püschel. Symmetry-based matrix factorization. J. Symb. Comp, to appear.

    Google Scholar 

  18. R. Foote. An algebraic approach to multiresolution analysis, (2003), submitted for publication.

    Google Scholar 

  19. W. Gentleman and G. Sande. Fast Fourier transform for fun and profit, Proc. AFIPS, Joint Computer Conference, 29, (1966), 563–578.

    Google Scholar 

  20. F. Goodman, P. de al Harpe, and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer-Verlag, New York, 1989.

    Google Scholar 

  21. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348.

    Article  MathSciNet  Google Scholar 

  22. M. T. Heideman, D. H. Johnson and C. S. Burrus. Gauss and the history of the fast Fourier transform, Archive for History of Exact Sciences, 34 (1985), no. 3, 265–277.

    Article  MathSciNet  Google Scholar 

  23. Peter Höyer. Efficient quantum transforms. Technical Report quant-ph/9702028, Quantum Physics e-Print Archive, 1997.

    Google Scholar 

  24. Richard Jozsa. Quantum factoring, discrete logarithms and the hidden subgroup problem. Computing, Science, and Engineering, 3 (2), pp. 34–43, (2001).

    Google Scholar 

  25. M. Kazhdan, T. Funkhouser and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D-shape descriptors. Symposium on Geometry Processing June, (2003) pp. 167–175.

    Google Scholar 

  26. A. B. Kyatkin and G. S. Chirikjian. Algorithms for fast convolutions on motion groups. App. Comp. Harm. Anal. 9, 220–241 (2000).

    MathSciNet  Google Scholar 

  27. G. Lebanon and J. Lafferty. Cranking: Combining rankings using conditional probability models on permutations, in Machine Learning: Proceedings of the Nineteenth International Conference, San Mateo, CA: Morgan Kaufmann, 2002.

    Google Scholar 

  28. J. Lafferty and D. N. Rockmore. Codes and iterative decoding on algebraic expander graphs, in Proceedings of International Symposium on Information Theory and its Application, Honolulu, Hawaii, 2000.

    Google Scholar 

  29. D. K. Maslen. The efficient computation of Fourier transforms on the symmetric group, Math. Comp. 67(223) (1998), 1121–1147.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. K. Maslen. Sampling of functions and sections for compact groups. in Modern Signal Processing, D. N. Rockmore and D. M. Healy, eds., Cambridge University Press, to appear.

    Google Scholar 

  31. D. K. Maslen. Efficient computation of Fourier transforms on compact groups, J. Fourier Anal. Appl. 4(1) (1998), 19–52.

    MATH  MathSciNet  Google Scholar 

  32. D. K. Maslen, M. Orrison, and D.N. Rockmore. Computing Isotypic Projections with the Lanczos Iteration. SIAM J. Matrix Analysis, to appear.

    Google Scholar 

  33. D. K. Maslen and D. N. Rockmore. Separation of variables and the computation of Fourier transforms on finite groups. I. J. Amer. Math. Soc. 10 (1997), no. 1, 169–214.

    Article  MathSciNet  Google Scholar 

  34. D. K. Maslen and D. N. Rockmore. Separation of variables and the computation of Fourier transforms on finite groups. II. In preparation.

    Google Scholar 

  35. D. K. Maslen and D. N. Rockmore. The Cooley-Tukey FFT and group theory, Notices Amer. Math. Soc 48 (2001), no. 10, 1151–1160.

    MathSciNet  Google Scholar 

  36. D. Maslen and D. N. Rockmore. Double coset decompositions and computational harmonic analysis on groups. J. Fourier Anal. Appl. 6(4), 2000, pp. 349–388.

    MathSciNet  Google Scholar 

  37. D. Maslen and D. N. Rockmore. Generalized FFTs—a survey of some recent results, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, 1997, pp. 183–237.

    Google Scholar 

  38. M. P. Mohlenkamp. A fast transform for spherical harmonics, J. Fourier Anal. Appl., 5 no. 2–3 (1999), 159–184.

    MATH  MathSciNet  Google Scholar 

  39. C. Moore, D. N. Rockmore, and A. Russell. Generic Quantum Fourier Transforms. Technical Report quant-ph/0304064, Quantum Physics e-print Archive, 2003.

    Google Scholar 

  40. J.M.F. Moura, J. Johnson, R.W. Johnson, D. Padua, V. Prasanna, M. Püschel, and M.M. Veloso, SPIRAL: Automatic Library Generation and Platform-Adaptation for DSP Algorithms, 1998, http://www.ece.cmu.edu/~spiral/

  41. S.P. Oh, D.N. Spergel, and G. Hinshaw. An Efficient Technique to Determine the Power Spectrum from the Cosmic Microwave Background Sky Maps. Astrophysical Journal, 510 (1999), 551–563.

    Article  Google Scholar 

  42. B. Parlett. The symmetric eigenvalue problem. Prentice-Hall Inc., Englewood Cliffs, N.J. 1980.

    Google Scholar 

  43. M. Püschel, S. Egner, and T. Beth. In Computer Algebra Handbook, Foundations, Applications, Systems. Eds. J. Grabmeier, E. Kaltofen, V. Weispfenning, Springer 2003, pp. 461–462.

    Google Scholar 

  44. M. Püschel, M. Rötteler, and T. Beth. Fast quantum Fourier transforms for a class of non-abeliangroups. (Proc. AAECC 99, LNCS 1719, Springer-Verlag, pp. 148–159.

    Google Scholar 

  45. M. Püschel, B. Singer, J. Xiong, J.M.F. Moura, J. Johnson, D. Padua, M.M. Veloso, and R.W. Johnson, SPIRAL. A Generator for Platform-Adapted Libraries of Signal Processing Algorithms. J. of High Performance Computing and Applications, accepted for publication.

    Google Scholar 

  46. C. Rader. Discrete Fourier transforms when the number of data samples is prime, IEEE Proc. 56 (1968), 1107–1108.

    Google Scholar 

  47. L. Rabiner, R. Schafer, and C. Rader, The chirp-z transform and its applications, Bell System Tech. J. 48 (1969), 1249–1292.

    MathSciNet  Google Scholar 

  48. D. N. Rockmore. Some applications of generalized FFTs (An appendix w/D. Healy), in Proceedings of the DIMACS Workshop on Groups and Computation, June 7–10, 1995. Eds. L. Finkelstein and W. Kantor, (1997), pp. 329–369

    Google Scholar 

  49. D. N. Rockmore. Fast Fourier transforms for wreath products, Appl. Comput. Harmon. Anal., 2, No. 3 (1995), 279–292.

    Article  MATH  MathSciNet  Google Scholar 

  50. J.-P. Serre. Linear representations of finite groups, Springer-Verlag, New York, 1977.

    Google Scholar 

  51. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing 26 (1997), 1484–1509.

    Article  MATH  MathSciNet  Google Scholar 

  52. Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474–1483, October 1997.

    Article  MATH  MathSciNet  Google Scholar 

  53. W. F. Spotz and P. N. Swarztrauber. A Performance Comparison of Associated Legendre Projections. Journal of Computational Physics, 168(2), (2001) 339–355.

    Article  MathSciNet  Google Scholar 

  54. L. Trefethen and D. Bau III. Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

    Google Scholar 

  55. A. Willsky. On the algebraic structure of certain partially observable finite-state Markov processes. Inform. Contr. 38, 179–212 (1978).

    Article  MATH  Google Scholar 

  56. S. Winograd, Arithmetic complexity of computations, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 33. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Rockmore, D.N. (2004). Recent Progress and Applications in Group FFTs. In: Byrnes, J. (eds) Computational Noncommutative Algebra and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 136. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2307-3_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2307-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1982-1

  • Online ISBN: 978-1-4020-2307-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics