Skip to main content

Abstract

The techniques classically used for the growth of bulk ZnO crystals, melt-growth, vapour growth, solution-growth and hydrothermal growth, are reviewed. In the case of vapor growth, numerical simulations suggest that such species as H2 + H2O, CH4, Zn, C or Fe could act as sublimation activators. The electrical and structural properties of crystals obtained by these various techniques are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Triboulet, Proceedings SPIE 4412, 1 (2000).

    Article  ADS  Google Scholar 

  2. G. Agarwal, J. E. Nause, and D. N. Hill, Mat. Res. Soc. Symp. Proc. 512, 41 (1998).

    Google Scholar 

  3. D. C. Reynolds, C. W. Litton, D. C. Look, J. E. Hoeschler, B. Claflin, T. C. Collins, J. Nause, and B. Nemeth, J. Appl. Phys. 95, 4802 (2004).

    Article  ADS  Google Scholar 

  4. M. Shiloh and J. Gutman, J. Crystal Growth 11, 105 (1971).

    Article  ADS  Google Scholar 

  5. W. Piekarczyk, S. Gazda, and T. Niemyski, J. Crystal Growth 12, 272 (1972).

    Article  ADS  Google Scholar 

  6. K. Matsumoto, K. Konemura, and G. Shimaoka, J. Crystal Growth 71, 99 (1985).

    Article  ADS  Google Scholar 

  7. K. Matsumoto and G. Shimaoka, J. Crystal Growth 86, 410 (1988).

    Article  Google Scholar 

  8. K. Matsumoto and K. Noda, J. Crystal Growth 102, 137 (1990).

    Article  ADS  Google Scholar 

  9. M. Hirose and I. Kubo, Jpn. J. Appl. Phys. 8, 402 (1969).

    Article  ADS  Google Scholar 

  10. Y. S. Park and D. C. Reynolds, J. Appl. Phys. 38, 756 (1967).

    Article  ADS  Google Scholar 

  11. M. Hirose, Y. Furuya, and I. Kubo, Jpn. J. Appl. Phys. 9, 726 (1970).

    Article  ADS  Google Scholar 

  12. E. Scharowsky, Z. Phys. 135, 318 (1953).

    Article  ADS  Google Scholar 

  13. K. F. Nielsen, J. Crystal Growth 3/4, 141 (1968).

    Article  ADS  Google Scholar 

  14. K. J. Fischer, J. Crystal Growth 34, 139 (1976).

    Article  ADS  Google Scholar 

  15. I. Kubo, J. Phys. Soc. Jap. 16, 2358 (1961).

    Article  ADS  Google Scholar 

  16. T. Takahasi, A. Ebina, and A. Kamigawa, Jpn. J. Appl. Phys. 5, 560 (1966).

    Article  ADS  Google Scholar 

  17. E. A. Weaver, J. Crystal Growth 1, 320 (1967).

    Article  ADS  Google Scholar 

  18. M. Hirose and Y. Furuya, Jpn. J. Appl. Phys. 9, 423 (1970).

    Article  ADS  Google Scholar 

  19. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Comm. 105, 399 (1998).

    Article  ADS  Google Scholar 

  20. J.-M. Ntep, S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Crystal Growth, 207, 30 (1999).

    Article  ADS  Google Scholar 

  21. S. Hassani, A. Tromson-Carli, A. Lusson, G. Didier, and R. Triboulet, Phys. Stat. Sol. 229, 835 (2002).

    Article  ADS  Google Scholar 

  22. A. Mycielski, A. Szadkowski, L. Kowalczyk, B. Witkowska, W. Kaliszek, B. Chwalisz, A. Wysmolek, R. Stepniewski, J. M. Baranowski, M. Potemski, A. Witowski, R. Jakiela, A. Barsz, P. Aleshkevych, M. Jouanne, W. Szuszkiewicz, A. Suchocki, E. Lusakowska, E. Kaminska, and W. Dobrowsolski, Proc. 11th International Conference on II–VI Compounds, to be published.

    Google Scholar 

  23. J.-M. Ntep, M. Barbé, G. Cohen-Solal, F. Bailly, A. Lusson, and R. Triboulet, J. Crystal Growth 184/185, 1026 (1998).

    Google Scholar 

  24. R. Triboulet, J.-M. N’tep, M. Barbé, P. Lemasson, I. Mora-Sero, and V. Munoz, J. Crystal Growth 198/199, 968 (1999).

    Article  ADS  Google Scholar 

  25. R. Tena-Zaera, M. C. Martínez-Tomás, S. Hassani, R. Triboulet, and V. Muñoz-Sanjosé, J. Crystal Growth, to be published.

    Google Scholar 

  26. N. Ramachandran, C. Su, and S. L. Lehoczky, J. Crystal Growth 208, 269 (2000).

    Article  ADS  Google Scholar 

  27. K. F. Nielsen and E. F. Dearborn, J. Phys. Chem. 64, 1762, (1960).

    Article  Google Scholar 

  28. B. M. Wanklyn, J. Crystal Growth 7, 107 (1970).

    Article  ADS  Google Scholar 

  29. G. A. Wolf and H. E. LaBelle Jr., J. Am. Ceram. Soc., 48, 441 (1965).

    Article  Google Scholar 

  30. J.-M. Ntep, PhD thesis, Paris 2000.

    Google Scholar 

  31. S. Hassani, G. Didier, P. Galtier, and R. Triboulet, to be published.

    Google Scholar 

  32. R. A. Laudise and A. Ballman, J. Phys. Chem. 64, 688 (1960).

    Article  Google Scholar 

  33. E. D Kolb and R. A. Laudise, J. Am. Ceram. Soc. 49, 302 (1966).

    Article  Google Scholar 

  34. R. A. Laudise, E. D. Kolb, and A. J. Caporaso, J. Am. Ceram. Soc. 47, 9 (1964).

    Article  Google Scholar 

  35. E. F. Venger, A. V. Melnichuk, L. Yu. Melnichuk, and Yu. A. Pasechnik, phys. stat. sol. (b) 188, 823 (1995).

    ADS  Google Scholar 

  36. I. P. Kuzmina and V. F. Antonova, M. Nauka 4, 151 (1964).

    Google Scholar 

  37. I. P. Kuzmina, Kristallografiya 13, 920 (1968).

    Google Scholar 

  38. M. Suscavage, M. Harris, D. Bliss, P. Yip, S.-Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D. C. Look, D. C. Reynolds, R. L. Jones, and C. W. Litton, Mat. Res. Soc. Symp. Proc. 537, 1999 to be published.

    Google Scholar 

  39. T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, J. Crystal Growth 214/215, 72 (2000).

    Article  Google Scholar 

  40. L. N. Demianets and D. V. Kostomarov, Ann. Chim. Sci. 26, 193 (2001).

    Article  Google Scholar 

  41. V. A. Nikitenko, J. Appl. Spectr. 57, 783 (1994).

    Article  Google Scholar 

  42. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, J. Crystal Growth 260, 166 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Triboulet, R., Munoz-Sanjosé, V., Tena-Zaera, R., Martinez-Tomas, M.C., Hassani, S. (2005). The Scope of Zinc Oxide Bulk Growth. In: Nickel, N.H., Terukov, E. (eds) Zinc Oxide — A Material for Micro- and Optoelectronic Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 194. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3475-X_1

Download citation

Publish with us

Policies and ethics