Skip to main content

INFRASTRUCTURE AND CAPABILITIES OF A NEAR REAL-TIME METEOROLOGICAL AND OCEANOGRAPHIC IN SITU INSTRUM

  • Chapter
Remote sensing of aquatic coastal ecosystem processes

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  • Anderson, S., R. Zepp, J. Machula, D. Santavy, L. Hansen and E. Mueller. 2001. Indicators of UV exposure in corals and their relevance to global climate change and coral bleaching. Human and Ecological Risk Assessment, 7:271-1282.

    Article  Google Scholar 

  • Blough, N.V. and S.A. Green. 1994. Spectroscopic characterization and remote sensing of non-living organic matter. In: Zepp RG, Sonntag C (eds.) Role of Non-Living Organic Matter in the Earth's Carbon Cycle. Wiley, New York. 42-57 pp.

    Google Scholar 

  • Blough, N.V. and R. Del Vecchio. 2002. Distribution and dynamics of chromophoric dissolved organic mater (CDOM) in the coastal environment, p. 503-541. In D. Hansell and C. Carlson [eds.], Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, 209 pp.

    Google Scholar 

  • Coles, S.L., P.L. Jokiel and C.R. Lewis. 1976. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pacific Science, 30:156-166.

    Google Scholar 

  • Corredor, J.E., A.W.Bruckner, F.Z. Muszynski, R.A. Armstrong, R. Garcia and J.M. Morell. 2000. UV-absorbing compounds in three species of Caribbean zooxanthellate corals: depth distribution and spectral response. Bulletin of Marine Science, 67:821-830.

    Google Scholar 

  • Fitt, W.K., B.W.Brown, M.E. Warner and R.P. Dunne. 2001. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs, 20:51-65.

    Google Scholar 

  • Fitt, W.K. and M.E. Warner. 1995. Bleaching patterns of four species of Caribbean reef corals. Biological Bulletin (Woods Hole), 189:298-307.

    Article  Google Scholar 

  • Gleason, D.F. and G.M. Wellington. 1993. Ultraviolet-radiation and coral bleaching. Nature, 365:836-838.

    Article  Google Scholar 

  • Global Observing Systems Information Center. 2005. http://www.gosic.org/ios/GOOS_ios.htm, observed March 31, 2005.

  • Glynn, P.W. 1993. Coral bleaching: ecological perspectives. Coral Reefs, 12:1-18.

    Article  Google Scholar 

  • Green, S.A. and N.V. Blough. 1994. Optical-absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 39:1903-1916.

    Google Scholar 

  • Hendee, J.C. 1998. An expert system for marine environmental monitoring in the Florida Keys National Marine Sanctuary and Florida Bay. 2nd International Conference on Environmental Coastal Regions. 1:57-66.

    Google Scholar 

  • Hendee, J.C. 2000. A data-driven soft real-time expert system for producing coral bleaching alerts. Ph.D. Thesis, Nova Southeastern University, 131 pp.

    Google Scholar 

  • Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research, 50:839-866.

    Article  Google Scholar 

  • Jerlov, N.G. 1968. Optical Oceanography. Elesevier,194 pp.

    Google Scholar 

  • Jones, R.J. and O. Hoegh-Guldberg. 2001. Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell and Environment, 24:89-99.

    Article  Google Scholar 

  • Jones, R.J., S. Ward, A.Y. Amri and O. Hoegh-Guldberg. 2000. Changes in quantum efficiency of Photosystem II of symbiotic dinoflagellates of corals after heat stress, and of bleached corals sampled after the Great Barrier Reef mass bleaching event. Marine and Freshwater Research, 51:63-71.

    Article  Google Scholar 

  • Kieber, D.J. and N.V. Blough. 1990. Determination of Carbon-Centered Radicals in Aqueous Solution by Liquid Chromatography with Fluorescence Detection. Analytical Chemistry, 62:2275-2283.

    Article  Google Scholar 

  • Kuwahara, V.S., H. Ogawa, T. Toda, T. Kikuchi and S. Taguchi. 2000. Variability of bio-optical factors influencing the seasonal attenuation of ultraviolet radiation in temperate coastal waters of Japan. Photochemistry and Photobiology, 72:193-199.

    Article  Google Scholar 

  • Lesser, M.P. and J.H. Farrell. 2004. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs, 23:367-377.

    Article  Google Scholar 

  • Lesser, M.P. and M.Y. Gorbunov. 2001. Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer. Marine Ecology-Progress Series, 212:69-77.

    Article  Google Scholar 

  • Lyons, M.M., P. Aas, J.D. Pakulski, L. Van Waasbergen, R.V. Miller, D.L. Mitchell and W.H. Jeffrey. 1998. DNA damage induced by ultraviolet radiation in coral-reef microbial communities. Marine Biology, 130: 537-543.

    Article  Google Scholar 

  • Markager, S. and W.F. Vincent. 2000. Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnology and Oceanography, 45:642-650.

    Google Scholar 

  • Miller, R.L. and B.F. McPherson. 1995. Modeling photosynthetically active radiation in water of Tampa Bay, Florida, with emphasis on the geometry of incident irradiance. Estuarine Coastal and Shelf Science, 40:359-377.

    Article  Google Scholar 

  • Miller, W.L., M.A. Moran, W.M. Sheldon, R.G. Zepp and S. Opsahl. 2002. Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnology and Oceanography, 47:343-352.

    Article  Google Scholar 

  • Moran, M.A. and R.G. Zepp. 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography, 42:1307-1316.

    Article  Google Scholar 

  • National Research Council. 2003. Enabling ocean research in the 21st century. The National Academic Press; Washington, D.C., 220 pp.

    Google Scholar 

  • Nelson, N.B. and D.A Siegel. 2002. Chromophoric DOM in the open ocean. In: Hansell DA, Carlson CA (eds.) Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, pp 547-578).

    Chapter  Google Scholar 

  • NOAA Biogeography Program. 2005. Benthic Habitats of Puerto Rico and the U.S. Virgin Islands Habitats; Habitats. http://biogeo.nos.noaa.gov/products/benthic/htm/frames_h.htm. (Viewed March 28, 2005).

  • NOAA Observing System Architecture. 2005. http://www.nosa.noaa.gov/observing_systems.html, observed March 31, 2005.

  • Ogden, J., J. Porter, N. Smith, A. Szmant, W. Jaap and D. Forcucci. 1994. A long-term interdisciplinary study of the Florida Keys seascape. Bulletin of Marine Science, 54(3):1059-1071.

    Google Scholar 

  • Otis, D.B., K.L. Carder, D.C. English and J.E. Ivey. 2004. CDOM transport from the Bahamas Banks. Coral Reefs, 23:152-160.

    Article  Google Scholar 

  • Sandvik, S.L.H., P. Bilski, J.D. Pakulski, C.F. Chignell and R.B. Coffin. 2000. Photogeneration of singlet oxygen and free radicals in dissolved organic matter isolated from the Mississippi and Atchafalaya River plumes. Marine Chemistry, 69:139-152.

    Article  Google Scholar 

  • Saxby T, Dennison WC, Hoegh-Guldberg O (2003) Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Marine Ecology-Progress Series 248: 85-97

    Article  Google Scholar 

  • Shick, J.M., M.P. Lesser and P.L. Jokiel. 1996. Ultraviolet radiation and coral stress. Global Change Biology, 2:527-545.

    Article  Google Scholar 

  • Stabenau, E.R., R.G. Zepp, E. Bartels and R.G. Zika. 2004. Role of the seagrass Thalassia testudinum as a source of chromophoric dissolved organic matter in coastal south Florida. Marine Ecology Progress Series, 282:59-72.

    Article  Google Scholar 

  • Stabenau, E.R. and R.G. Zika. 2004. Correlation of the absorption coefficient with a reduction in mean mass for dissolved organic matter in Southwest Florida River Plumes. Marine Chemistry, 89:55-67.

    Article  Google Scholar 

  • Sutherland, K.P., J.W. Porter and C. Torres. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecology Progress Series, 266:273-302.

    Article  Google Scholar 

  • U.S. Commission on Ocean Policy. 2004. An ocean blueprint for the 21st century. Final Report. Washing-ton, D.C.

    Google Scholar 

  • Vaughan, P.P. and N.V. Blough. 1998. Photochemical formation of hydroxyl radical by constituents of natural waters. Environmental Science and Technology, 32:2947-2953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

HENDEE, J., STABENAU, E., FLORIT, L., MANZELLO, D., JEFFRIS, C. (2006). INFRASTRUCTURE AND CAPABILITIES OF A NEAR REAL-TIME METEOROLOGICAL AND OCEANOGRAPHIC IN SITU INSTRUM. In: RICHARDSON, L., LeDREW, E. (eds) Remote sensing of aquatic coastal ecosystem processes. Remote Sensing and Digital Image Processing, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3968-9_6

Download citation

Publish with us

Policies and ethics