Skip to main content

OBSERVATIONS OF SPRITES FROM SPACE AT THE NADIR: THE LSO (LIGHTNING AND SPRITE OBSERVATIONS) EXPERIMENT ON BOARD OF THE INTERNATIONAL SPACE STATION

  • Conference paper
Sprites, Elves and Intense Lightning Discharges

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 225))

Abstract

The experiment LSO (Lightning and Sprite Observations) on board of the International Space Station is the first experiment dedicated to sprite observations at the nadir. Such observations are difficult because the luminous emissions of sprites and lightning can be superimposed when they are observed from space at the nadir. Such observations are however needed for measuring simultaneously all possible emissions (radio, X-γ, high energy electrons) associated with sprites for a better understanding of the implied mechanisms. They are possible in specific spectral lines where sprites are differentiated from lightning. Absorption bands of the atmosphere are well adapted for this differentiation because the light emissions from sprites occurring in the middle and upper atmosphere are less absorbed in these bands than lightning emissions occurring more deeply in the atmosphere. The most intense spectral emission band of the sprites, corresponding to the N21P band at 761 nm, partly superimposed with the oxygen absorption A band of the atmosphere, is used by the LSO experiment. The experiment is composed of two micro-cameras, one in the visible and near infra red, the other equipped with an adapted filter. Only sprites, halos and superbolts, which correspond to a class of rare very intense lightning, are transmitted through the filter. Sprites, halos and superbolts are identified by the ratio of the intensities received through the filter and in the whole spectrum. This ratio is lower for superbolts than for sprites and halos. The response of the sprites is also more complex and variable than the response of superbolts which is very flat and comparable from an event to another. Finally, LSO observed 17 sprites, 3 halos and 9 superbolts. Several examples of differentiation of sprite and superbolts are given. The results of a first global statistical study are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Barrington-Leigh, C. P., Inan, U. S., and Stanley, M. (2001). Identification of sprites and elves with identified video and broad-band array photometry. J. Geophys. Res., 106(A2):1741–1750.

    Article  ADS  Google Scholar 

  • Bell, T. F., Reising, S. C., and Uman, U. S. (1988). Intense continuing currents following positive cloud-to-cloud lightning associated with red sprites. Geophys. Res. Lett., 25(8):1285–1288.

    Article  ADS  Google Scholar 

  • Blanc, E., Farges, T., Roche, R., Brebion, D., Hua, T., Labarthe, A., and Melnikov, V. (2004). Nadir observations of sprites from the International Space Station. J. Geophys. Res., 109(A02306):1-8doi:10.1029/2003JA009972.

    Google Scholar 

  • Blanc, E., Lefeuvre, F., et al. (2003). TARANIS: a project of microsatellite for the study of sprites and associated emissions. In Paper presented at EGU.

    Google Scholar 

  • Boeck,W. L., Jr., O. H. Vaughan, Blakeslee, R. J., Vonnegut, B., and Brook, M. (1998). The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J. Atmos. Sol.-Terr. Phys., 60(7-9):669–677.

    Article  ADS  Google Scholar 

  • Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., and Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108(D1):4005.

    Article  Google Scholar 

  • Cummer, S. A., Inan, U. S., Bell, T. F., and Barrington-Leigh, C. P. (1998). ELF radiation produced by electrical currents in sprites. Geophys. Res. Lett., 25(8):1281–1284.

    Article  ADS  Google Scholar 

  • Cummer, S. C. and Füllekrug, M. (2001). Unusually intense continuing current in lightning produces delayed mesospheric breakdown. Geophys. Res. Lett., 28(3):495–498.

    Article  ADS  Google Scholar 

  • Dwyer, J. R., Rassoul, H. K., Al-Dayeh, M., Caraway, L., Wright, B., Chrest, A., Uman, M. A., Rakov, V. A., Rambo, K. J., Jordan, D. M., Ferauld, J., and Smyth, C. (2004). A ground level gamma-ray burst observed in association with rocket triggered lightning. Geophys. Res. Lett., 31(L05119):doi:10.1029/2003GL018771.

    Google Scholar 

  • Feldman, W. C., Symbalisty, E. M. D., and Roussel Dupré, R. A. (1995). Association of discrete hard X ray enhancements with the eruption of Mount Pinatubo. J. Geophys. Res., 100:23829.

    Article  ADS  Google Scholar 

  • Fishman, G. J., Bhat, P. N., Mallozzi, R., Horack, J. M., Koshut, T., Kouveliotou, C., Pendleton, G. N., Meegan, C. A., Wilson, R. B., Paciesas, W. S., Goodman, S. J., and Christian, H. J. (1994). Discovery of intense gamma ray flashes of atmospheric origin. Science, 264:1313–1316.

    Article  ADS  Google Scholar 

  • Füllekrug, M., Moudry, D. R., Dawes, G., and Sentman, D. D. (2001). Mesospheric sprite current triangulation. J. Geophys. Res., 106(17):20,189-20,194.

    Google Scholar 

  • Gerken, E. A., Inan, U. S., and Barrington-Leigh, C. P. (2000). Telescoping imaging of sprites. Geophys. Res. Lett., 27(17):2637–2640.

    Article  ADS  Google Scholar 

  • Hampton, D. L., Heavner, M. J., Wescott, E. M., and Sentman, D. D. (1996). Optical spectral characteristics of sprites. Geophys. Res. Lett., 23(1):89–92.

    Article  ADS  Google Scholar 

  • Hardman, S. F., Dowden, R. L., J. B., Brundell, and Bahr, J. L. (2000). Sprite observations in the Northern territory of Australia. J. Geophys. Res., 105(D4):4689–4697.

    Article  ADS  Google Scholar 

  • LIS/OTD webpage, (PI H.J. Christian) (2002). LIS data are produced by the NASA. NASA website http://ghrc.msfc.nasa.gov. Available from the Global Hydrology Resource Center.

    Google Scholar 

  • Lopez, L. I., Lin, R. P., Smith, D. M., and Barrington-Leigh, C. P. (2004). Detection of terrestrial gamma-ray flashes with the RHESSI spacecraft. In Fuellekrug, M., editor, Sprites, Elves and Intense Lightning Discharges, Corte, Corsica. NATO, Kluwer. Poster presentation.

    Google Scholar 

  • Lyons,W. A., Nelson, T. E., Armstrong, R. A., Pasko, V. P., and Stanley, M. A. (2003). Upward electrical discharges from thunderstorm tops. Bull. Am. Met. Soc., 84(4):445–454.

    Article  ADS  Google Scholar 

  • Lyons, W. A., Russell, A. R., Bering, E. A., and Williams, E. R. (2000). The hundred year hunt for the sprite. EOS Trans. AGU, 81:33.

    Google Scholar 

  • MacGorman, D. R. and Rust, W. D. (1998). The electrical nature of storms. Oxford University Press.

    Google Scholar 

  • Milikh, G., Valdivia, J. A., and Papadopoulos, K. (1998). Spectrum of red sprites. J. Atmos. Sol.-Terr. Phys., 60:907–915.

    Article  ADS  Google Scholar 

  • Morrill, J. S., Bucsela, E. J., Pasko, V. P., Berg, S. L., Heavner, M. J., Moudry, D. R., Benesch, W. M., Wescott, E. M., and Sentman, D. D. (1998). Time resolved N2 triplet state vibrational populations and emissions associated with red sprites. J. Atmos. Sol.-Terr. Phys., 60:811–829.

    Article  ADS  Google Scholar 

  • Moudry, D., Stenbaek-Nielsen, H., Sentman, D., and Wescott, E. (2003). Imaging of elves, halos and sprite initiation at 1ms time resolution. J. Atmos. Sol.-Terr. Phys., 65:509–518.

    Article  ADS  Google Scholar 

  • Neubert, T., Allin, T. H., Stenbaek-Nielsen, H., and Blanc, E. (2001). Sprites over Europe. Geophys. Res. Lett., 28(18):3585–3588.

    Article  ADS  Google Scholar 

  • Orville, R. E. and Henderson, R. W. (1984). Absolute spectral irradiance measurements of lightning from 375 to 880 nm. J. Atmos. Sci., 41:3180–3187.

    Article  ADS  Google Scholar 

  • Pasko, V. P., Inan, U. S., Bell, T. F., and Taranenko, Y. N. (1997). Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res., 102(A3):4529–4561.

    Article  ADS  Google Scholar 

  • Roussel-Dupré, R. and A., Gurevich (1996). On runaway breakdown and upward propagating discharges. J. Geophys. Res., 101:2297–2311.

    Article  ADS  Google Scholar 

  • Roussel-Dupré, R., Symbalisty, E., Taranenko, Y., and Yukhimuk, V. (1998). Simulations of high altitude discharges initiated by runaway breakdown. J. Atmos. Sol.-Terr. Phys., 60(7-9):917–940.

    Article  ADS  Google Scholar 

  • Roussel-Dupré, R. A., Symbalisty, E. M. D., Tierny, H. E., and Triplett, L. (2002). New fully electromagnetic simulations of sprites initiated by runaway air breakdown. In URSI XXVIIth General Assembly, Maastricht.

    Google Scholar 

  • São Sabbas, F. T., Sentman, D. D., Wescott, E. M., Jr., O. P. Pinto, Jr., O. Mendes, and Taylor, M. J. (2003). Statistical analysis of space time relation ships between sprites and lightning. J. Atmos. Sol.-Terr. Phys., 65:525–535.

    Article  ADS  Google Scholar 

  • Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L., and Heavner, M. J. (1995). Preliminary results from the sprites94 aircraft campaign: 1. red sprites. Geophys. Res. Lett., 22(10):1205–1208.

    Article  ADS  Google Scholar 

  • Solar Survey Archive-2000 (2005). http://www.bass2000.obspm.fr.

    Google Scholar 

  • Su, H. T., Hsu, R. R., Chen, A. B., and Lee, Y. J. (2002). Observation of sprites over the Asian continent and over oceans around Taiwan. Geophys. Res. Lett., 29(4):10.1029/2001GL013737.

    Google Scholar 

  • Turman, B. N. (1977). Detection of the lightning superbolts. J. Geophys. Res., 82:2566–2568.

    Article  ADS  Google Scholar 

  • Vaughan, O. H. (1994). NASA Shuttle lightning research: observations of nocturnal thunderstorms and lightning displays as seen during recent space shuttle missions. In Proc. SPIE, volume 2266, pages 395–403.

    Article  ADS  Google Scholar 

  • Yair, Y., Israelevich, P., Devir, A. D., Moalem, M., Price, C., Joseph, J. H., Levin, Z., Ziv, B., A., Sternlieb, and A., Teller (2004). New observations of sprites from the space shuttle. J. Geophys. Res., 109(D15201):1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Blanc, E., Farges, T., Brebion, D., Labarthe, A., Melnikov, V. (2006). OBSERVATIONS OF SPRITES FROM SPACE AT THE NADIR: THE LSO (LIGHTNING AND SPRITE OBSERVATIONS) EXPERIMENT ON BOARD OF THE INTERNATIONAL SPACE STATION. In: Füllekrug, M., Mareev, E.A., Rycroft, M.J. (eds) Sprites, Elves and Intense Lightning Discharges. NATO Science Series II: Mathematics, Physics and Chemistry, vol 225. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4629-4_7

Download citation

Publish with us

Policies and ethics