Skip to main content

Galleria Mellonella as a Model Host to Study Gut Microbe Homeostasis and Brain Infection by the Human Pathogen Listeria Monocytogenes

  • Chapter
  • First Online:
Yellow Biotechnology I

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 135))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

AMP:

Antimicrobial peptide

References

  1. Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241

    Article  CAS  Google Scholar 

  2. Kelly D, Mulder IE (2012) Microbiome and immunological interactions. Nutr Rev 70(Suppl 1):S18–S30

    Article  Google Scholar 

  3. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8(5):e1002742. doi:10.1371/journal.ppat.1002742

    Article  Google Scholar 

  4. Glavis-Bloom J, Muhammed M, Mylonakis E (2012) Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol 710:11–17

    CAS  Google Scholar 

  5. Chamilos G, Samonis G, Kontoyiannis DP (2011) Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds. Curr Pharm Des 17(13):1246–1253

    Article  CAS  Google Scholar 

  6. Vilcinskas A (2011) Anti-infective therapeutics from the Lepidopteran model host Galleria mellonella. Curr Pharm Des 17(13):1240–1245

    Article  CAS  Google Scholar 

  7. Mukherjee K, Fischer R, Vilcinskas A (2012) Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool 9:25

    Google Scholar 

  8. Ooi ST, Lorber B (2005) Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis 40(9):1327–1332

    Article  Google Scholar 

  9. Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A (2013) Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 4(4):324–332. doi:10.4161/viru.23629

    Google Scholar 

  10. Mukherjee K, Abu Mraheil M, Silva S, Müller D, Cemic F, Hemberger J, Hain T, Vilcinskas A, Chakraborty T (2011) Anti-listeria activities of Galleria mellonella hemolymph proteins. Appl Environ Microbiol 77(12):4237–4240

    Article  CAS  Google Scholar 

  11. Sudakaran S, Salem H, Kost C, Kaltenpoth M (2012) Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 21(24):6134–6151. doi:10.1111/mec.12027

    Article  CAS  Google Scholar 

  12. Koch H, Schmid-Hempel P (2012) Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 15(10):1095–1103

    Article  Google Scholar 

  13. Engel P, Moran NA (2012) Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4(1):60–65

    Google Scholar 

  14. Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108(48):19288–19292

    Article  CAS  Google Scholar 

  15. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109(27):11002–11007

    Article  CAS  Google Scholar 

  16. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  17. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  18. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  Google Scholar 

  19. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  Google Scholar 

  20. Xu J, Gordon JI (2007) Inaugural article: honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  Google Scholar 

  21. Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W (2012) Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 7(7):e36978

    Article  CAS  Google Scholar 

  22. Sanz Y, Nadal I, Sanchez E (2007) Probiotics as drugs against human gastrointestinal infections. Recent Pat Anti-Infect Drug Disc 2:148–156

    Article  CAS  Google Scholar 

  23. Medellin-Pena MJ, Griffiths MW (2009) Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Appl Environ Microbiol 75:1165–1172

    Article  CAS  Google Scholar 

  24. Corr SC, Gahan CG, Hill C (2007) Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol Med Microbiol 50:380–388

    Article  CAS  Google Scholar 

  25. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290

    Article  CAS  Google Scholar 

  26. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    Article  CAS  Google Scholar 

  27. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  Google Scholar 

  28. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  CAS  Google Scholar 

  29. Vilcinskas A (2011) Insects emerge as valuable model hosts to explore virulence. Virulence 2(5):376–378

    Article  Google Scholar 

  30. Pitsouli C, Apidianakis Y, Perrimon N (2009) Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe 6:301–307

    Article  CAS  Google Scholar 

  31. Rubin DC (2007) Intestinal morphogenesis. Curr Opin Gastroenterol 23:111–114

    Article  Google Scholar 

  32. Hooper LV (2009) Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol 7:367–374

    Article  CAS  Google Scholar 

  33. Othman M, Aguero R, Lin HC (2008) Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 24:11–16

    Article  Google Scholar 

  34. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112

    Article  CAS  Google Scholar 

  35. Clermont A, Wedde M, Seitz V, Podsiadlowski L, Lenze D, Hummel M, Vilcinskas A (2004) Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity. Biochem J 382(Pt 1):315–322

    CAS  Google Scholar 

  36. Langen G, Imani J, Altincicek B, Kieseritzky G, Kogel KH, Vilcinskas A (2006) Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol Chem 387(5):549–557

    Article  CAS  Google Scholar 

  37. Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53(3):125–133

    Article  CAS  Google Scholar 

  38. Altincicek B, Vilcinskas A (2008) Identification of a lepidopteran matrix metalloproteinase with dual roles in metamorphosis and innate immunity. Dev Comp Immunol 32(4):400–409

    Article  CAS  Google Scholar 

  39. Altincicek B, Vilcinskas A (2006) Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth Galleria mellonella. Dev Comp Immunol 30(12):1108–1118

    Article  CAS  Google Scholar 

  40. De La Cochetiere MF, Durand T, Lalande V, Petit JC, Potel G, Beaugerie L (2008) Effect of antibiotic therapy on human fecal microbiota and the relation to the development of Clostridium difficile. Microb Ecol 56:395–402

    Article  CAS  Google Scholar 

  41. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  Google Scholar 

  42. Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66

    Article  CAS  Google Scholar 

  43. Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58:1160–1167

    Article  Google Scholar 

  44. Danese S, Sans M, Fiocchi C (2004) Inflammatory bowel disease: the role of environmental factors. Autoimmun Rev 3:394–400

    Article  CAS  Google Scholar 

  45. Beaugerie L, Petit JC (2004) Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol 18:337–352

    Article  CAS  Google Scholar 

  46. Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131

    Article  CAS  Google Scholar 

  47. Lee HR, Pimentel M (2006) Bacteria and irritable bowel syndrome: the evidence for small intestinal bacterial overgrowth. Curr Gastroenterol Rep 8:305–311

    Article  Google Scholar 

  48. Croswell A, Amir E, Teggatz P, Barman M, Salzman NH (2009) Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun 77:2741–2753

    Article  CAS  Google Scholar 

  49. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  Google Scholar 

  50. Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66

    Article  CAS  Google Scholar 

  51. Lindgren M, Lofmark S, Edlund C, Huovinen P, Jalava J (2009) Prolonged impact of a one-week course of clindamycin on Enterococcus spp. in human normal microbiota. Scand J Infect Dis 41:215–219

    Article  CAS  Google Scholar 

  52. Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58:1160–1167

    Article  Google Scholar 

  53. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870

    Article  CAS  Google Scholar 

  54. O’Shea EF, O’Connor PM, Raftis EJ, O’Toole PW, Stanton C, Cotter PD, Ross RP, Hill C (2011) Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol 193(24):6973–6982

    Article  Google Scholar 

  55. Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76(1):310–317

    Article  CAS  Google Scholar 

  56. Joyce SA, Gahan CG (2010) Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology 156(Pt 11):3456–3468

    Article  CAS  Google Scholar 

  57. Vogel H, Altincicek B, Glöckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12:308

    Article  Google Scholar 

  58. van Sorge NM, Doran KS (2012) Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 7(3):383–394

    Article  Google Scholar 

  59. Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, Lefkowitz L, Perkins BA (1997) Bacterial meningitis in the United States in 1995. N Engl J Med 337:970–976

    Article  CAS  Google Scholar 

  60. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351:1849–1859

    Article  Google Scholar 

  61. Clauss HE, Lorber B (2008) Central nervous system infection with Listeria monocytogenes. Curr Infect Dis Rep 10:300–306

    Article  Google Scholar 

  62. Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Hessian Ministry of Science and Art (HMWK) via the collaborative research projects granted under the LOEWE programs “Insect Biotechnology” (Insektenbiotechnologie) and “Translational Pharmaceutical Research” (Angewandte Arzneimittelforschung). The authors thank Dr Richard M Twyman for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vilcinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukherjee, K., Raju, R., Fischer, R., Vilcinskas, A. (2013). Galleria Mellonella as a Model Host to Study Gut Microbe Homeostasis and Brain Infection by the Human Pathogen Listeria Monocytogenes . In: Vilcinskas, A. (eds) Yellow Biotechnology I. Advances in Biochemical Engineering/Biotechnology, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_203

Download citation

Publish with us

Policies and ethics