Skip to main content

Challenges and Perspectives in Nucleic Acid Enzyme Engineering

  • Chapter
  • First Online:
Book cover Catalytically Active Nucleic Acids

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 170))

Abstract

Engineering of nucleic acids has been a goal in research for many years. Since the discovery of catalytic nucleic acids (ribozymes and DNAzymes), this field has attracted even more attention. One reason for the increased interest is that a large number of ribozymes have been engineered that catalyze a broad range of reactions of relevance to the origin of life. Another reason is that the structures of ribozymes or DNAzymes have been modulated such that activity is dependent on allosteric regulation by an external cofactor. Such constructs have great potential for application as biosensors in medicinal or environmental diagnostics, and as molecular tools for control of cellular processes. In addition to the development of nucleic acid enzymes by in vitro selection, rational design is a powerful strategy for the engineering of ribozymes or DNAzymes with tailored features. The structures and mechanisms of a large number of nucleic acid catalysts are now well understood. Therefore, specific design of their functional properties by structural modulation is a good option for the development of custom-made molecular tools. For rational design, several parameters have to be considered, and a number of tools are available to help/guide sequence design. Here, we discuss sequence, structural and functional design using the example of hairpin ribozyme variants to highlight the challenges and opportunities of rational nucleic enzyme engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998. doi:10.1021/cr030183i

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jimenez RM, Polanco JA, Luptak A (2015) Chemistry and biology of self-cleaving ribozymes. Trends Biochem Sci 40(11):648–661. doi:10.1016/j.tibs.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frommer J, Appel B, Müller S (2015) Ribozymes that can be regulated by external stimuli. Curr Opin Biotechnol 31:35–41. doi:10.1016/j.copbio.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  4. Müller S, Appel B, Krellenberg T, Petkovic S (2012) The many faces of the hairpin ribozyme: structural and functional variants of a small catalytic RNA. IUBMB Life 64(1):36–47. doi:10.1002/iub.575

    Article  CAS  PubMed  Google Scholar 

  5. Hollenstein M (2015) DNA catalysis: the chemical repertoire of DNAzymes. Molecules 20(11):20777–20804. doi:10.3390/molecules201119730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jäschke A (2001) Artificial ribozymes and deoxyribozymes. Curr Opin Struct Biol 11(3):321–326

    Article  Google Scholar 

  7. Wilson TJ, Lilley DM (2015) RNA catalysis—is that it? RNA 21(4):534–537. doi:10.1261/rna.049874.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Müller S, Appel B, Balke D, Hieronymus R, Nübel C (2016) Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? F1000Res, 5. doi:10.12688/f1000research.8601.1

  9. Umekage S, Kikuchi Y (2009a) In vitro and in vivo production and purification of circular RNA aptamer. J Biotechnol 139(4):265–272. doi:10.1016/j.jbiotec.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  10. Umekage S, Kikuchi Y (2009b) In vivo circular RNA production using a constitutive promoter for high-level expression. J Biosci Bioeng 108(4):354–356. doi:10.1016/j.jbiosc.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  11. Müller S (2015) Engineering of ribozymes with useful activities in the ancient RNA world. Ann N Y Acad Sci 1341:54–60. doi:10.1111/nyas.12695

    Article  CAS  PubMed  Google Scholar 

  12. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. doi:10.1016/j.chembiol.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drude I, Dombos V, Vauléon S, Müller S (2007a) Drugs made of RNA: development and application of engineered RNAs for gene therapy. Mini Rev Med Chem 7(9):912–931

    Article  CAS  Google Scholar 

  14. Hieronymus R, Godehard SP, Balke D, Müller S (2016) Hairpin ribozyme mediated RNA recombination. Chem Commun 52:4365–4368. doi:10.1039/C6CC00383D

    Article  CAS  Google Scholar 

  15. Müller S (2003) Engineered ribozymes as molecular tools for site-specific alteration of RNA sequence. Chembiochem 4(10):991–997. doi:10.1002/cbic.200300665

    Article  CAS  PubMed  Google Scholar 

  16. Riley CA, Lehman N (2003) Generalized RNA-directed recombination of RNA. Chem Biol 10(12):1233–1243

    Article  CAS  Google Scholar 

  17. Dotson 2nd PP, Frommeyer KN, Testa SM (2008) Ribozyme mediated trans insertion-splicing of modified oligonucleotides into RNA. Arch Biochem Biophys 478(1):81–84. doi:10.1016/j.abb.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  18. Vauléon S, Ivanov SA, Gwiazda S, Müller S (2005) Site-specific fluorescent and affinity labelling of RNA by using a small engineered twin ribozyme. Chembiochem 6(12):2158–2162. doi:10.1002/cbic.200500215

    Article  CAS  PubMed  Google Scholar 

  19. Ferre-D’Amare AR (2004) The hairpin ribozyme. Biopolymers 73(1):71–78. doi:10.1002/bip.10516

    Article  CAS  PubMed  Google Scholar 

  20. Klostermeier D, Millar DP (2000) Helical junctions as determinants for RNA folding: origin of tertiary structure stability of the hairpin ribozyme. Biochemistry 39(42):12970–12978

    Article  CAS  Google Scholar 

  21. Fedor MJ (1999) Tertiary structure stabilization promotes hairpin ribozyme ligation. Biochemistry 38(34):11040–11050. doi:10.1021/bi991069q

    Article  CAS  Google Scholar 

  22. Rupert PB, Ferré-D’Amaré AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410(6830):780–786. doi:10.1038/35071009

    Article  CAS  PubMed  Google Scholar 

  23. Rupert PB, Massey AP, Sigurdsson ST, Ferré-D’Amaré AR (2002) Transition state stabilization by a catalytic RNA. Science 298(5597):1421–1424. doi:10.1126/science.1076093

    Article  CAS  PubMed  Google Scholar 

  24. Berzal-Herranz A, Joseph S, Burke JM (1992) In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev 6(1):129–134. doi:10.1101/gad.6.1.129

    Article  CAS  PubMed  Google Scholar 

  25. Berzal-Herranz A, Joseph S, Chowrira BM, Butcher SE, Burke JM (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J 12(6):2567–2573

    Article  CAS  Google Scholar 

  26. Chowrira BM, Berzal-Herranz A, Burke JM (1991) Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354(6351):320–322. doi:10.1038/354320a0

    Article  CAS  Google Scholar 

  27. Chowrira BM, Burke JM (1991) Binding and cleavage of nucleic acids by the “hairpin” ribozyme. Biochemistry 30(35):8518–8522

    Article  CAS  Google Scholar 

  28. Joseph S, Berzal-Herranz A, Chowrira BM, Butcher SE, Burke JM (1993) Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev 7(1):130–138. doi:10.1101/gad.7.1.130

    Article  CAS  PubMed  Google Scholar 

  29. Anderson P, Monforte J, Tritz R, Nesbitt S, Hearst J, Hampel A (1994) Mutagenesis of the hairpin ribozyme. Nucleic Acids Res 22(6):1096–1100. doi:10.1093/nar/22.6.1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shippy R, Siwkowski A, Hampel A (1998) Mutational analysis of loops 1 and 5 of the hairpin ribozyme. Biochemistry 37(2):564–570. doi:10.1021/bi9721288

    Article  CAS  Google Scholar 

  31. Balke D, Becker A, Müller S (2016) In vitro repair of a defective EGFP transcript and translation into a functional protein. Org Biomol Chem 14:6729–6737. doi:10.1039/c6ob01043a

    Article  CAS  PubMed  Google Scholar 

  32. Balke D, Zieten I, Strahl A, Müller O, Müller S (2014) Design and characterization of a twin ribozyme for potential repair of a deletion mutation within the oncogenic CTNNB1-ΔS45 mRNA. ChemMedChem 9(9):2128–2137. doi:10.1002/cmdc.201402166

    Article  CAS  PubMed  Google Scholar 

  33. Drude I, Strahl A, Galla D, Müller O, Müller S (2011) Design of hairpin ribozyme variants with improved activity for poorly processed substrates. FEBS J 278(4):622–633. doi:10.1111/j.1742-4658.2010.07983.x

    Article  CAS  PubMed  Google Scholar 

  34. Gaur S, Heckman JE, Burke JM (2008) Mutational inhibition of ligation in the hairpin ribozyme: substitutions of conserved nucleobases A9 and A10 destabilize tertiary structure and selectively promote cleavage. RNA 14(1):55–65. doi:10.1261/rna.716108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Welz R, Bossmann K, Klug C, Schmidt C, Fritz HJ, Müller S (2003) Site-directed alteration of RNA sequence mediated by an engineered twin ribozyme. Angew Chem Int Ed 42(21):2424–2427. doi:10.1002/anie.200250611

    Article  CAS  Google Scholar 

  36. Drude I, Vauléon S, Müller S (2007b) Twin ribozyme mediated removal of nucleotides from an internal RNA site. Biochem Biophys Res Commun 363(1):24–29. doi:10.1016/j.bbrc.2007.08.135

    Article  CAS  PubMed  Google Scholar 

  37. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11:129. doi:10.1186/1471-2105-11-129

    Article  CAS  Google Scholar 

  38. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431

    Article  CAS  Google Scholar 

  39. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125(2):167–188. doi:10.1007/Bf00818163

    Article  CAS  Google Scholar 

  40. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

  41. Weeks KM, Mauger DM (2011) Exploring RNA structural codes with SHAPE chemistry. Acc Chem Res 44(12):1280–1291. doi:10.1021/ar200051h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A 106(1):97–102. doi:10.1073/pnas.0806929106

    Article  PubMed  Google Scholar 

  43. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101(19):7287–7292. doi:10.1073/pnas.0401799101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26. doi:10.1186/1748-7188-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  45. Andronescu M, Fejes AP, Hutter F, Hoos HH, Condon A (2004) A new algorithm for RNA secondary structure design. J Mol Biol 336(3):607–624. doi:10.1016/j.jmb.2003.12.041

    Article  CAS  PubMed  Google Scholar 

  46. Höner zu Siederdissen C, Hammer S, Abfalter I, Hofacker IL, Flamm C, Stadler PF (2013) Computational design of RNAs with complex energy landscapes. Biopolymers 99(12):1124–1136. doi:10.1002/bip.22337

    Article  CAS  PubMed  Google Scholar 

  47. Taneda A (2015) Multi-objective optimization for RNA design with multiple target secondary structures. BMC bioinformatics 16:280. doi:10.1186/s12859-015-0706-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scherr M, LeBon J, Castanotto D, Cunliffe HE, Meltzer PS, Ganser A, Riggs AD, Rossi JJ (2001) Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA. Mol Ther 4(5):454–460. doi:10.1006/mthe.2001.0481

    Article  CAS  PubMed  Google Scholar 

  49. Warashina M, Kuwabara T, Kato Y, Sano M, Taira K (2001) RNA-protein hybrid ribozymes that efficiently cleave any mRNA independently of the structure of the target RNA. Proc Natl Acad Sci U S A 98(10):5572–5577. doi:10.1073/pnas.091411398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Welz R, Schmidt C, Müller S (2001) Spermine supports catalysis of hairpin ribozyme variants to differing extents. Biochem Biophys Res Commun 283(3):648–654. doi:10.1006/bbrc.2001.4829

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Balke, D., Hieronymus, R., Müller, S. (2017). Challenges and Perspectives in Nucleic Acid Enzyme Engineering. In: Seitz, H., Stahl, F., Walter, JG. (eds) Catalytically Active Nucleic Acids. Advances in Biochemical Engineering/Biotechnology, vol 170. Springer, Cham. https://doi.org/10.1007/10_2017_21

Download citation

Publish with us

Policies and ethics